自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 yolo系列热力图,即插即用。

原地址:https://github.com/z1069614715/objectdetection_script/tree/master/yolo-gradcam

2024-03-29 16:16:02 178

原创 【MOT多目标跟踪】最简单的demo

Ultralytics YOLO 支持以下跟踪算法。通过传递相关的 YAML 配置文件(如。BoT-SORT - 使用 botsort.yaml 以启用此跟踪器。字节跟踪 - 使用 bytetrack.yaml 以启用此跟踪器。model:训练好的检测模型;source需要追踪的图片或视频。这部分就不赘述了,用命令快速训练,然后进行追踪。只需要修改model,source的位置就行。或者python代码。

2024-03-28 11:16:59 330

原创 使用yolov8,报错AttributeError: module ‘cv2‘ has no attribute ‘setNumThreads‘

我使用 opencv-python==4.6.0.66 修复了这个问题,请重新安装你的 opencv 或使用 docker 镜像可能需要更改 opencv-python 版本的范围,以确保 opencv 更新不会对未来产生任何影响:)

2024-03-22 10:49:09 384

原创 【处理数据标签】1.提取目标类别的图片和标签;2.删除目标标签制作负样本。

用白色填充图片的目标区域,删除目标标签类的标签框。用白色填充图片的目标区域,删除目标标签类的标签框。

2024-03-20 15:08:01 252

原创 jupyter中pip安装包会安装到别的环境。

如果你在 Jupyter Notebook 中使用 pip 安装包,它默认会将包安装到 Jupyter Notebook 所在的Python 环境。这可能会导致安装的包与你期望的环境不匹配。

2024-03-16 17:58:13 515

原创 4.10.CVAT——3D对象标注

使用 3D 注释工具来标记 3D 对象和场景,例如车辆、建筑物、景观等。

2024-03-15 23:40:04 1413

原创 4.9.CVAT——用长方体进行注释

它用于注释 3 维物体,例如汽车、盒子等。目前该功能支持单点透视,并具有垂直边缘与侧面完全平行的约束。

2024-03-15 21:54:33 510

原创 【yolo检测模型出现大量误报】

例如,可以根据正样本和负样本的数量进行平衡,或者根据实际场景中目标的出现频率来调整负样本的比例。简单来说,精确率关注的是被分类器预测为正例的样本中有多少是真正的正例,而准确率关注的是分类器对整个数据集的整体预测准确性。需要注意的是,在实际应用中,过采样和欠采样方法的选择要根据具体的数据分布和分类问题来确定,以及对模型性能的影响进行评估和调优。YOLO的文档中没有固定规定负样本添加的比例。因此,对于YOLOv8或其他目标检测模型,负样本添加的比例通常是根据具体情况进行调整和设置的,并没有固定的标准或规定。

2024-03-15 15:08:41 935

原创 【数据不平衡处理方法】

处理数据不平衡问题的方法有多种,以下是一些常用的方法:过采样(Oversampling):增加少数类样本的数量,使得正样本和负样本的数量更加平衡。过采样的方法包括随机复制样本、SMOTE(SyntheticMinority Over-sampling Technique)等。欠采样(Undersampling):减少多数类样本的数量,使得正样本和负样本的数量更加平衡。欠采样的方法包括随机删除样本、ClusterCentroids等。

2024-03-14 09:52:40 658

原创 4.8.CVAT——用骨架skeletons注释

我们深入研究通过实施骨架注释来注释复杂结构的有效过程。骨架用作注释模板,用于注释具有一致结构的复杂对象,例如人体姿势估计或面部标志。骨架由许多点(也称为元素)组成,这些点可以通过边连接。每个点都充当单独的对象,拥有独特的属性和属性,例如颜色、遮挡和可见性。骨架可以以两种格式导出:图像的 CVAT 和 COCO 关键点。注意:在无标签项目中,无法通过导入数据集来导入骨架标签。您需要在导入之前手动定义标签。

2024-03-13 20:13:05 802

原创 打开jupyter notebook报错500:Internal Server Error【安装jupyter依赖nbconvert后,jupyter还是找不到nbconvert】

打开jupyter notebook报错500:Internal Server Error。一般是缺少依赖项或配置问题: Jupyter Notebook 可能缺少必要的依赖项或配置不正确。

2024-03-13 11:47:27 1021

原创 【yolov8和yolov5】用命令快速着手训练

通过克隆版本库和建立环境为启动做好准备。这将确保所有必要的要求都已安装。检查 Python>=3.8.0和PyTorch>=1.8准备起飞。请确保你的目录结构、数据集配置和模型路径等信息都正确,以确保训练和测试的顺利进行。

2024-03-11 11:32:09 893

原创 【yolov中的训练批次batch】详细介绍

较大的训练批次大小(batch size)通常对于模型的收敛和稳定性有益,但在一些情况下,尤其是对于小目标检测,可能会面临一些挑战。以你提到的 YOLOv8 为例,如果你将训练批次设置为8,那么在每次模型更新参数的训练步骤中,会同时输入8张图像。: 如果数据集中小目标的数量相对较少,较大的批次可能导致在训练过程中小目标的信息受到较少的关注。然而,批次大小的选择也可能受到硬件限制的影响,因为较大的批次可能需要更多的显存。: 使用合适的学习率来平衡模型的权重更新,确保小目标的特征得到足够的重视。

2024-03-09 14:00:27 954

原创 4.7.CVAT——椭圆标注(道路标志)

椭圆的创建方式与矩形相同,您需要指定两个相对的点,椭圆将内接于一个假想的矩形。您可以使用旋转点来旋转椭圆,其方式与矩形相同。首先,您需要选择控件侧边栏上的。它用于道路标志注释等。

2024-03-08 17:48:43 245

原创 【yolov8自带脚本划分数据集】yolov8自己数据集训练

只需要1秒就可以划分好4万张图像的数据集。之后就可以训练模型了。

2024-03-06 21:03:54 545

原创 【使用imgaug库调整图像大小并修改对应的XML标签框】

使用imgaug库可以方便地进行图像增强操作,包括调整图像大小。

2024-03-04 17:23:44 292

原创 4.6.CVAT——带点的注释详细操作

使用单个点或包含多个点的形状对任务进行标注的指南。

2024-03-02 15:31:13 336

原创 6.CVAT——属性注释模式

对相同类型的对象进行注释更方便。在这种情况下,您可以应用适当的过滤器。在此模式下,您可以使用键盘在对象和框架之间快速导航来编辑属性。打开顶部面板中的下拉列表,然后选择属性注释模式。.查看底部侧面板,查看更改属性的所有可能的快捷方式。键盘上的 / 或单击 UI 中的按钮以转到下一个/有关详细信息,请参阅属性注释模式(高级)部分。要在对象(在本例中为人)之间导航,请使用特殊面板。要查看属性注释模式下可用的所有热键,请按。属性注释模式下可用的使用示例和基本操作。在该模式下,可以在同一帧上处理大量对象。

2024-03-02 14:15:45 389

原创 5.CVAT用户角色

作业可以有一个分配的用户(具有任何角色),并且该被分配者将执行特定于阶段的工作,即批注、验证或接受作业。请注意,要访问组织页面,必须先激活组织(请参阅在组织之间切换)。请注意,要访问组织页面,必须先激活组织(请参阅在组织之间切换)。请注意,如果您创建了 10 个以上的组织,则下拉菜单中将显示“切换组织”行。请注意,如果您创建了 10 个以上的组织,则下拉菜单中将显示“切换组织”行。组织,邀请团队成员,并分配角色,使团队更好地处理共享任务。如果您有多个组织,则可以在任何给定时间在这些组织之间切换。

2024-03-02 14:10:11 962

原创 【pip安装失败——Linux没设置DNS服务器】WARNING: Retrying (Retry(total=4, connect=None, read=None

由于你使用的是非官方的包索引地址http://pypi.douban.com/simple/,而不是默认的官方PyPI(Python Package Index)地址,你需要通过–trusted-host选项告诉pip你信任这个自定义的主机。这个选项通常用于在使用非官方或自定义的Python包索引(例如,http://pypi.douban.com/simple/)时,确保pip信任该主机。在正式的环境中,你应该确保你信任的主机是可靠和安全的。用你的代理服务器地址、端口以及认证信息替换示例中的内容。

2024-03-01 21:49:31 1190

原创 4.5.CVAT——视频标注的详细步骤

追踪模式Track mode (视频标注使用)——类似pr的动画效果。

2024-02-29 11:16:44 1672 1

原创 4.4.CVAT——使用折线进行注释

它用于道路标记、注释等。在开始之前,您需要选择。有两种方法可以绘制多段线。

2024-02-29 11:03:17 310

原创 4.3.CVAT——分割标注的详细步骤

如果两个标准都建议切割相同的零件,则算法会自动工作,否则,用户必须做出决定。如果要手动选择应截断多边形的哪个部分,请在设置中禁用。要启用拖动,您应该在多边形内部单击鼠标右键,然后选择。在这种情况下,在闭合多边形后,您可以选择要离开的多边形部分。单击最后一个点,将自动构建到该点的轮廓。的同时单击它,它将打开多边形编辑器。要编辑多边形,您必须在按住。

2024-02-29 10:52:13 749

原创 4.2.CVAT——分类任务标注的详细步骤

在这里,您可以为标签选择标签,然后单击 Plus 按钮进行添加。它用于注释框架,标签不显示在工作区中。在开始之前,请打开顶部面板中的下拉列表,然后选择 Tag annotation。选择自己需要的标注格式导出,如按照以yolo的格式导出。如果您只需要为一个帧使用一个标签,请启用该复选框,然后在添加标签后,该。标签将显示在画布的左上角。

2024-02-28 14:13:58 440 2

原创 4.1.CVAT——目标检测的标注详细步骤

锁定对象的形状是透明的,并且很容易对新对象进行注释。选择水平矩形框标注,在开始之前,选择正确的 Label (应由您在创建任务时指定)和 Drawing Method (按 2 点 按 4 点)四点标注的标注过程更为复杂,能够更灵活地适应目标的形状。选择自己需要的标注格式导出,如按照以yolo的格式导出。Shape:是用来标注图像的。

2024-02-27 22:36:48 725 3

原创 【将标注信息为VOC格式的XML文件转换为YOLOv格式的TXT文件】

当将XML标签转换为YOLOv格式的TXT文件时,通常需要提取XML文件中的对象(物体)标注信息,并将其转换为适合YOLOv格式的文本。YOLOv格式的文本文件通常包含每个物体的类别、边界框的归一化坐标和宽高等信息。

2024-02-27 21:29:23 483

原创 3.CVAT—快捷键详述

许多UI元素都有快捷方式提示。将指针指向必需的元素以查看它。

2024-02-27 16:31:01 363

原创 2.CVAT—导入导出数据集并上传注释

在任务或作业中,您可以上传注释。为此,请在任务菜单 Action 或作业 Menu 中选择项目 Upload annotation , Top panel 选择您计划上传注释的格式,然后通过资源管理器选择注释文件或存档。然后回到任务面板,打开就可以看到已经标注好的结果了。Pascal VOC的xml格式的注释。在导入过程中,您将能够跟踪导入进度。从可用选项列表中选择对应的标签格式。标注文件的格式是打包压缩好的。coco的json格式的注释。从选择需要输出的标签格式。YOLO的txt格式的注释。

2024-02-27 15:34:30 1225

原创 【pip安装时报错403】WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None))

由于你使用的是非官方的包索引地址http://pypi.douban.com/simple/,而不是默认的官方PyPI(Python Package Index)地址,你需要通过–trusted-host选项告诉pip你信任这个自定义的主机。这个选项通常用于在使用非官方或自定义的Python包索引(例如,http://pypi.douban.com/simple/)时,确保pip信任该主机。在正式的环境中,你应该确保你信任的主机是可靠和安全的。选项用于指定信任的主机。

2024-02-26 17:57:47 557

原创 1.2.CVAT标注界面介绍

在 CVAT 中,工作区充当中心枢纽,注释者与图像、视频和可用于创建高质量注释的各种工具进行交互。

2024-02-18 10:28:14 865

原创 1.1.CVAT初使用—Task界面介绍

Actions中展开:: 支持标签导入,比如在数据集已有的头盔和灭火器等标签的前提下,想继续标注此数据集中的车辆,用于人头、行人、车三类目标的训练集,就可以使用此功能将人头和人体标签导入。具体操作移步本教程“标签导入/导出”。: 下载数据集标签到本地。: 半自动标注,CVAT支持用预训练模型对数据集在线生成标签,如此可以大大提升标注效率,暂时没有该教程。: 支持导入或导出一个已有的task, 详见此处。

2024-02-07 10:48:53 850

原创 1.CVAT建项目步骤

CVAT的标注最小单位是Task,每个Task为一个标注任务。

2024-02-07 10:37:26 752

原创 CVAT标注工具概述

适用范围:用于注释数字图像和视频。CVAT 支持与对象检测、图像分类和图像分割相关的监督式机器学习任务。标注类型:它使用户能够使用四种类型的形状对图像进行注释:框、多边形(通常和用于分割任务)、折线(可用于注释道路上的标记)和点(例如,用于注释面部特征或姿态估计)。便捷工具:CVAT 还提供有助于执行典型注释任务的功能,例如许多自动化工具(包括使用 TensorFlow对象检测 API 复制和传播对象、插值和自动注释的功能)、视觉设置、快捷方式、过滤器等。

2024-02-07 10:27:55 1662

原创 【yolov5目标检测demo优化】详细步骤

优化 YOLOv5 模型以提高精度可以涉及多个方面的调整和改进。下面是一些建议:深度学习的五个步骤: 数据 -> 模型 -> 损失 -> 优化器 -> 迭代训练。

2024-02-07 09:04:08 855

原创 【yolo检测时只检测一个或几个类】

【代码】【yolo检测时只一个或几个类】

2024-01-30 14:14:46 358 2

原创 【生成文件目录】

读取txt文件里面的目录结构,然后用python脚本一键生成对应的文件夹目录。

2024-01-29 21:59:28 132

原创 【视频中抽帧】【多视频播放器】“全部代码”为了快速浏览视频中要检测的目标&抽取出有用的帧以便后续标注。

# 1.多视频播放器这个脚本页面的**功能**:1. 多个本地视频可以同时播放2. 可以设置倍速播放,可以自定义需要的速度。(最大倍速16倍)# 2.从视频中抽帧脚本功能:1. 从多个时间段抽取视频帧。2. 设置抽帧间隔为每隔n帧抽取一帧3. 按自己需求重新命名图片名字

2024-01-26 00:32:46 263

原创 【md5sum命令刚生成md5文件,用该md5文件对原文件进行检查是否完整】居然显示不完整,离谱!

首先,生成原文件的 MD5 摘要文件。这将在同一目录下生成一个名为 yourfile.md5 的文件,其中包含原文件的 MD5 摘要。

2024-01-17 16:25:08 399

原创 【yolov5目标检测demo】

通过服务器登录,用户可以执行各种操作,如上传和下载文件、运行应用程序、查看和修改配置文件等。在完成操作后,用户可以通过退出命令来断开与服务器的连接。在电脑上登录服务器,通常需要打开终端(Mac或Linux系统)或命令提示符(Windows系统)。在登录服务器之前,需要确认服务器的地址或IP地址。通常,服务器管理员会提供给用户一个服务器地址,用户需要将该地址输入到登录界面的相应位置。其中,username是用户在服务器上的用户名,server_address是服务器的地址。整理好需要的数据集。

2024-01-17 14:16:57 938

原创 【labelImg第一次使用】①报错Fatal error in launcher: Unable to create process using ②总是闪退

图片的文件命名方式与存放位置请按照下图路径存放:命名一个1-exting-oilmachine的文件夹在文件夹新建一个名为1-exting-oilmachine的文件夹,1-exting-oilmachine文件夹下有以下文件(文件夹不要放乱,否则在下面训练集与验证集划分时会有报错)如果已经进行过标注,打开的Annotations文件,也就是classes.txt,里面的标签如果没有该数据集的标注,就会闪退。Annotations:该文件夹下存放的是打标签后的标签信息,是xml文件。

2024-01-09 17:57:55 862

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除