分类中常见的类别不平衡问题解决方法

类别不平衡问题在分类任务中常见,导致模型偏向多数类别。解决方法包括扩大数据集、欠采样、过采样、使用新评价指标、尝试不同算法、模型惩罚、转换问题视角及创新。常用算法如SMOTE、EasyEnsemble、决策树,评价指标有混淆矩阵、ROC曲线、AUC和Kappa。
摘要由CSDN通过智能技术生成

常见的类别不平衡问题解决方法

  通常的分类学习方法中都有一个共同的假设,即不同类别的训练样例数目相同。如果不同类别的训练样例数目稍有差别,通常对分类影响不大,但是若差别很大,则会对学习造成影响,测试结果非常差。例如二分类问题中有998个反例,正例有2个,那么学习方法只需返回一个永远将新样本预测为反例的分类器,就能达到99.8%的精度;然而这样的分类器没有价值,我们必须要解决这个问题。

那么,什么是“类别不平衡”?

  类别不平衡(class-imbalance)是指分类任务中不同类别的训练样例数目差别很大的情况。
  在现实的分类任务中,我们会经常遇到类别不平衡的问题。例如,在银行信用欺诈交易识别中,属于欺诈交易的应该是很少部分,绝大部分交易是正常的,这就是一个正常的类别不平衡问题。一般而已,如果类别不平衡比例超过4:1,那么其分类器会大大地因为数据不平衡性而无法满足分类要求的。因此在构建分类模型之前,需要对分类不平衡性问题进行处理。

解决方法

1、扩大数据集

  当遇到类别不均衡问题时,首先应该想到,是否可能再增加数据(一定要有小类样本数据),更多的数据往往战胜更好的算法。因为机器学习是使用现有的数据对整个数据的分布进行估计,因此更多的数据往往能够得到更多的分布信息。即使再增加小类样本数据时,又增加了大类样本数据,也可以使用放弃一部分大类数据(即对大类数据进行欠采样)来解决。

2、欠采样

  欠采样(under-sampling):对大类的数据样本进行采样来减少该类数据样本的个数,使其与其他类数目接近,然后再进行学习。欠采样若随机丢弃大类样本,可能会丢失一些重要信息。
欠采样的代表算法是EasyEnsemble:利用集成学习机制,将大类划分为若干个集合供不同的学习器使用。这样对每个学习器来看都进行了欠采样,但在全局来看却不会丢失重要信息。

3、过采样

  过采样(over-sampling ):对小类的数据样本进行采样来增加小类的数据样本个数。
  过采样的代表算法是SMOTE

  • 26
    点赞
  • 192
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值