题目描述
题解
二叉搜索树转双向链表。采用递归的思路去求解,当前节点左侧的节点都小于它,只要采用递归的方式去实现就可以了,当前节点的父节点和右子节点都大于它,但是在建立连接的时候应先连接右子节点,再把生成的链表反馈给上一层。
这里直接给出代码,然后分析思想:
public class Solution {
private TreeNode leftHead = null;
private TreeNode rightHead = null;
public TreeNode Convert(TreeNode pRootOfTree) {
if (pRootOfTree == null) {
return null;
}
Convert(pRootOfTree.left);
if (leftHead == null) {
leftHead = pRootOfTree;
rightHead = pRootOfTree;
}else {
rightHead.right = pRootOfTree;
pRootOfTree.left = rightHead;
rightHead = pRootOfTree;
}
Convert(pRootOfTree.right);
return leftHead;
}
}
分析:这是最为简洁的解题思路,递归分为三个部分,递归左子节点,把当前节点连接到链表右侧,再递归右子节点,最后返回链表的最左侧的节点。leftHead和rightHead作为全局,在递归中,这个变量可以方便被给个子递归代码公用,这种方式在之前的求最小路径的代码中也出现过。
小结:如何解决这类问题?首先找到相似的可以递归的地方,然后找到建立引用关系的方式。因为搜索树的结构为左边小于当前节点,右边大于当前节点,于是可以直接搭建递归的左、中、右结构,如何和上一级联系起来呢?通过全局变量。