Python之numpy高维索引与newaxis的用法

对于高维数组,索引位置上的元素不再是标量而是低一维的数组

例子:

X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print ('X[:, 3] : ' ,X[:, 3])
print('\n' * 1)  #仅仅是为了打印的时候空出一行,好看。
print('X[:, 3].shape : ', X[:, 3].shape) 

这里写图片描述

再看看下面索引与上面索引的不同之处:

print ('X[:, 3:] : ')
print('\n' * 1) 
print (X[:, 3:])
print('\n' * 1) 
print('X[:, 3:].shape : ', X[:, 3:].shape ) 

这里写图片描述

你加不加多一个冒号就决定了你后面输出的值的shape。

当然你不加冒号,你可以用newaxis的方法来多加一个轴
例子:

X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print ('X[:, 3] : ' ,X[:, 3][:,np.newaxis])
print('\n' * 1) 
print('X[:, 3].shape : ', X[:, 3][:,np.newaxis].shape) 

你可以试一下啦,跟加冒号是一样的

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值