利用决策树分类时划分数据集的特征的选取:信息增益

在利用决策树进行类别划分时,如果每个实例均有多个特征,那么在决策树每一个分支到底利用哪个特征进行类别划分呢?《机器学习实战》这本书提到一种方法,哪就是选取的特征要能使信息增益最大(信息熵的变化)。首先我们要根据分类标签计算出原始的信息熵,如有一堆实例,它们可以划分成鱼类和非鱼类(鱼类,非鱼类即分类标签),假设鱼类的实例个数是2,非鱼类的实例个数是3,那么由信息论的知识可知原始的信息熵为0.970950594455。接着我们分别以每个特征把这些实例分类,再根据分类标签(鱼非鱼)计算其信息熵,他们与原始信息熵的差值便是信息增益,选取使信息增益大的那个特征作为最好的划分数据集的特征。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值