c语言学习(八)数据的存储

本文介绍了计算机中数据类型的分类,包括整型、浮点型及其在内存中的存储方式。重点讲解了整型的原码、反码、补码表示以及大小端字节序的概念,还探讨了浮点数在内存中的存储结构,遵循IEEE 754标准。通过对这些基础知识的理解,有助于深入掌握计算机底层工作原理。
摘要由CSDN通过智能技术生成

目录

1.数据类型介绍

类型的基本归类:

整型在内存中的存储

原码、反码、补码

大小端介绍

浮点型在内存中的存储

2.整型在内存中的存储,原码,反码,补码

3.大小端字节序介绍及判断

4.浮点型在内存中的存储解析


1.数据类型介绍

前面我们已经学习了基本的内置类型

char //字符数据类型

short //短整型

int //整型

long //长整型

long long //更长整型

float //单精度浮点数

double //双精度浮点型

//c语言有没有字符串类型?

以及他们所占存储空间的大小。类型的意义:

1.使用这个类型开辟内存空间的大小(大小决定了使用范围)。

2.如何看待内存空间的视角。

类型的基本归类:

整型家族:

char

        unsigned char

        signed char

short

        unsigned short [int]

        signed short[int]

int

        unsigned int

        signed int

 long

        unsigned long [int]

        signed long [int]

浮点数家族:

float

double

构造类型:

数组类型

结构体类型 struct

枚举类型 enum

联合类型 union

指针类型

int *pi;

char *pc;

void *pv;

空类型

void 表示空类型(无类型)

通常应用于函数的返回类型,函数的参数,指针类型。

整型在内存中的存储

我们之前讲过一个变量的创建时要在内存中开辟空间的,空间的大小是根据不同的类型而决定的。

那接下来我们谈谈数据在所开辟的内存中到底是如何存储的?

比如:

int a = 20;

int b = -10;

我们知道为a分配四个字节的空间,那如何存储?

下来了解下面的概念:

原码、反码、补码

计算机中的有符号数有三种表示方法、即原码、反码和补码。

三种表示方法均有符号位数值位两部分,符号位都是用0表示"正",用1表示"负",而数值位三种表示方法更不相同。

原码

直接将二进制按照正负数的形式翻译成二进制就可以。

反码

将原码的符号位不变,其他位一次按位取反就可以得到了。

补码

反码+1就得到补码。

有符号数中的正数的原码、反码和补码相同。

无符号数的原码、反码和补码也相同。

 对于整型来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位的数值域统一处理,同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

 我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲,这是又为什么?

大小端介绍

什么是大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中。

小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中。

为什么有大端和小端?

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit,但是在c语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对应位数大于8位的处理器,例如32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储和小端存储模式。

例如一个16bit的short型x,在内存中的地址位0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节,对应大端模式,就将0x11放在低地址中,即ox0010中。0x22放在高地址中,即0x0011中,小端模式,刚好相反,我们常用的x86结构是小端模式,而Keil C51则为大端模式。很多的ARM,DSP都为小端模式,有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

浮点型在内存中的存储

常见的浮点数:

3.14159

1E10

浮点数家族包括:float double long double类型。

浮点数表示的范围:float.h中定义

浮点数存储的例子:

#include<stdio.h>

int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("pFloat的值为:%f\n", *pFloat);

	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("pFloat的值为:%f\n", *pFloat);
	return 0;
}

输出的结构是什么呢?

 num和*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

详细解读:

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数v可以表示成下面的形式:

(-1)^S * M * 2^E

(-1)^s表示符号位,当s = 0,v为正数;当s = 1,v为负数。

M表示有效数字,大于等于1,小于2。

2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01x2^2,那么,按照上面v的格式,可以得出s = 0,M = 1.01,E = 2.

十进制的-5.0,写成二进制是-101.0,相当于-1.01x2^2,那么,s = 1,M = 1.01,E= 2。

IEEE 754规定:对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

 IEEE 754对有效数字M和指数E,还有一些特别规定。前面说过,1<=M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分.

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数位例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unisgned int)这意味着,如果E为8位,它的取值范围为0~255;入股E为11位,它的取值范围为0~2047.但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间值,对于8位的E,这个中间值是127;对于11位的E,这个中间值是1023.比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001.

然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1.比如:0.5(1/)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数,这样做是为了表示±0,以及接近于0的很小的数字。

E为全1

 这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。

2.整型在内存中的存储,原码,反码,补码

3.大小端字节序介绍及判断

4.浮点型在内存中的存储解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值