# 1062 Talent and Virtue （25 分）

1062 Talent and Virtue （25 分）

About 900 years ago, a Chinese philosopher Sima Guang wrote a history book in which he talked about people's talent and virtue. According to his theory, a man being outstanding in both talent and virtue must be a "sage（圣人）"; being less excellent but with one's virtue outweighs talent can be called a "nobleman（君子）"; being good in neither is a "fool man（愚人）"; yet a fool man is better than a "small man（小人）" who prefers talent than virtue.

Now given the grades of talent and virtue of a group of people, you are supposed to rank them according to Sima Guang's theory.

### Input Specification:

Each input file contains one test case. Each case first gives 3 positive integers in a line: N (≤10​5​​), the total number of people to be ranked; L (≥60), the lower bound of the qualified grades -- that is, only the ones whose grades of talent and virtue are both not below this line will be ranked; and H (<100), the higher line of qualification -- that is, those with both grades not below this line are considered as the "sages", and will be ranked in non-increasing order according to their total grades. Those with talent grades below Hbut virtue grades not are cosidered as the "noblemen", and are also ranked in non-increasing order according to their total grades, but they are listed after the "sages". Those with both grades below H, but with virtue not lower than talent are considered as the "fool men". They are ranked in the same way but after the "noblemen". The rest of people whose grades both pass the L line are ranked after the "fool men".

Then N lines follow, each gives the information of a person in the format:

ID_Number Virtue_Grade Talent_Grade


where ID_Number is an 8-digit number, and both grades are integers in [0, 100]. All the numbers are separated by a space.

### Output Specification:

The first line of output must give M (≤N), the total number of people that are actually ranked. Then M lines follow, each gives the information of a person in the same format as the input, according to the ranking rules. If there is a tie of the total grade, they must be ranked with respect to their virtue grades in non-increasing order. If there is still a tie, then output in increasing order of their ID's.

### Sample Input:

14 60 80
10000001 64 90
10000002 90 60
10000011 85 80
10000003 85 80
10000004 80 85
10000005 82 77
10000006 83 76
10000007 90 78
10000008 75 79
10000009 59 90
10000010 88 45
10000012 80 100
10000013 90 99
10000014 66 60


### Sample Output:

12
10000013 90 99
10000012 80 100
10000003 85 80
10000011 85 80
10000004 80 85
10000007 90 78
10000006 83 76
10000005 82 77
10000002 90 60
10000014 66 60
10000008 75 79
10000001 64 90

/*

1.德分和才分<L,为不及格，第5类考生
2.德分和才分都>=H，为第1类考生
3.才分<H，但德分>=H，为第2类考生
4.L<=德分才分均<H,且德分>=才分,为第3类考生
5.其余情况为第4类考生，这类包含情况较多，因此放在最后鉴别，可以减少代码量

1.先按类别从小到大排序
2.类别相同的，按总分从大到小排序
3.总分相同的，按德分从大到小排序
4.德分相同的，按准考证号从小到大排序

*/
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>

using namespace std;

struct student{
char id; //准考证号
int de,cai,sum; //德分,才分，总分
int flag; //考生类别：第1类~第5类

}stu;

bool cmp(student a,student b)
{
if(a.flag!=b.flag) return a.flag<b.flag;//按类别从小到大
else if(a.sum!=b.sum) return a.sum>b.sum; //类别相同的，按总分从大到小排序
else if(a.de!=b.de) return a.de>b.de; //总分相同的，按德分从大到小排序
else return strcmp(a.id,b.id)<0; //德分相同的，按准考证号从小到大排序

}

int main()
{
int N,L,H; //N为考生总数，L为最低录取分数线，K为最优录取分数线
scanf("%d%d%d",&N,&L,&H);
int m=N; //m为及格人数
for(int i=0;i<N;i++)
{
scanf("%s%d%d",stu[i].id,&stu[i].de,&stu[i].cai);
stu[i].sum=stu[i].de+stu[i].cai; //计算总分
if(stu[i].de<L||stu[i].cai<L)
{
stu[i].flag=5;
m--; //及格人数减一
}
else if(stu[i].de>=H&&stu[i].cai>=H) stu[i].flag=1;
else if(stu[i].de>=H&&stu[i].cai<H) stu[i].flag=2;
else if(stu[i].de<H&&stu[i].cai<H&&stu[i].de>=stu[i].cai) stu[i].flag=3;
else stu[i].flag=4;

}

sort(stu,stu+N,cmp); //排序
printf("%d\n",m); //输出及格人数
for(int i=0;i<m;i++)
{
printf("%s %d %d\n",stu[i].id,stu[i].de,stu[i].cai);
}
return 0;
}