prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边的数目无关,
而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。
kruskal : 按权排,每次取权最小且不构成回路的加入,直到取完n-1条边 (用并查集解决不构成回路)
/*
hdu 1233 最小生成树
kruskal
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <math.h>
#include <queue>
#include <stack>
#include <vector>
#include <deque>
#include <set>
#include <map>
#include <time.h>;
#define cler(arr, val) memset(arr, val, sizeof(arr))
#define IN freopen ("in.txt" , "r" , stdin);
#define OUT freopen ("out.txt" , "w" , stdout);
using namespace std;
typedef long long ll;
const int MAXN = 100010;//点数的最大值
const int MAXM = 20006;//边数的最大值
const int INF = 0x3f3f3f3f;
const int mod = 10000007;
int gcd(int a, int b) { return b ? gcd(b, a%b) : a; }
const int maxn = 100 + 5;
int fa[maxn];
int n;
struct edges {
int x, y, d;
}e[maxn*(maxn-1)/2];
int cmp(edges a1, edges a2) {return a1.d < a2.d;}
void init() {for (int i = 1; i <= n; i++) fa[i] = i;}
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
void unite(int x, int y)
{
int tx = find(x), ty = find(y);
if (tx != ty)fa[tx] = ty;
}
int kruskal(int num)
{
init();
int ans = 0;
int sum = 0;//加进去的边数
for (int i = 0; i < num; i++) //num条边
{
if (find(e[i].x) != find(e[i].y))
{
ans += e[i].d;
unite(e[i].x, e[i].y);
sum++;
}
if (n - 1 == sum)
return ans;
}
}
int main()
{
while (scanf("%d", &n) && n)
{
if (n == 1)
{
puts("0");
continue;
}
int bian = n*(n - 1) / 2;
for (int i = 0; i < bian; i++)
scanf("%d%d%d", &e[i].x, &e[i].y, &e[i].d);
sort(e, e + bian, cmp);
printf("%d\n", kruskal(bian));
}
return 0;
}