P2678 [NOIP2015 提高组] 跳石头-洛谷

P2678 [NOIP2015 提高组] 跳石头-洛谷

题目背景

一年一度的“跳石头”比赛又要开始了!

题目描述

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N N N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M M M 块岩石(不能移走起点和终点的岩石)。

输入格式

第一行包含三个整数 L , N , M L,N,M L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 L \geq 1 L1 N ≥ M ≥ 0 N \geq M \geq 0 NM0

接下来 N N N 行,每行一个整数,第 i i i 行的整数 D i ( 0 < D i < L ) D_i( 0 < D_i < L) Di(0<Di<L), 表示第 i i i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出格式

一个整数,即最短跳跃距离的最大值。

样例 #1

样例输入 #1

25 5 2 
2
11
14
17 
21

样例输出 #1

4

提示

输入输出样例 1 说明

将与起点距离为 2 2 2 14 14 14 的两个岩石移走后,最短的跳跃距离为 4 4 4(从与起点距离 17 17 17 的岩石跳到距离 21 21 21 的岩石,或者从距离 21 21 21 的岩石跳到终点)。

数据规模与约定

对于 20 % 20\% 20%的数据, 0 ≤ M ≤ N ≤ 10 0 \le M \le N \le 10 0MN10
对于 50 % 50\% 50% 的数据, 0 ≤ M ≤ N ≤ 100 0 \le M \le N \le 100 0MN100
对于 100 % 100\% 100%的数据, 0 ≤ M ≤ N ≤ 50000 , 1 ≤ L ≤ 1 0 9 0 \le M \le N \le 50000,1 \le L \le 10^9 0MN50000,1L109

思路

此题属于二分答案,我们可以问自己一些问题:
(1)此题输入是否满足单调性?是否需要排序?
     答:满足单调性,不需要排序
(2)二分的对象是什么?
	答:求最小最大,对象是最短跳跃距离
(3)是查找左边界还是右边界?
	答:右边界,因为是求“最大值”

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int a[50010];

bool check(int c){
	int cont=0,p=0;//cont:删除的石头数量  p:人所在的位置
	for(int i=1;i<=n;i++){
		if(a[i]-p<c) cont++;//如果比最短路径还短,那么把这块石头删除
		else p=a[i];//跳到下一块石头上
	}
	if(k-p<c) cont++;//注意:到终点的距离也要判断!!!
	if(cont>m) return false;
	else return true;
}
int main(){
	cin>>k>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	int l=1,r=k;
	while(l<=r){
		int mid=(l+r)>>1;
		if(check(mid)) l=mid+1;
		else r=mid-1;
	}
	cout<<l-1;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值