世界上最美的诗

英文版: You say that you love rain, but you open your umbrella when it rains. You say that you love the sun, but you find a shadow spot when the sun...

2018-11-28 18:58:30

阅读数 41

评论数 0

Scipy中的常用模块

Scipy中的常用模块

2019-01-17 18:57:53

阅读数 13

评论数 0

大数据的周边技术-这个解释很通俗

一、概述: 这里有几个名词的解释,为了方便大家以后查资料、自学或参加相关培训与智能现钞管理相关的技术,对这些名词的范围作了解释。以下概念都是很粗略的解释,不同学派不同群体的看法相差很大,但都是在浏览了大量资料的基础上得出的概述。 随着互联网的快速发展,互联网产品的接入用户量级和接入场景范围不断...

2019-01-16 14:39:55

阅读数 9

评论数 0

GitLab卸载

清理命令 ``` sudo gitlab-ctl uninstall sudo gitlab-ctl cleanse sudo gitlab-ctl remove-accounts ``` 停止gitlab ``` gitlab-ctl stop ``` 卸载gitlab `...

2018-12-27 11:29:23

阅读数 12

评论数 0

Linux高级命令

1. xargs 例如,下面的命令: rm find /path -type f 如果path目录下文件过多就会因为“参数列表过长”而报错无法执行。但改用xargs以后,问题即获解决。 find /path -type f -print0 | xargs -0 rm 本例中xargs将fi...

2018-12-27 11:25:58

阅读数 15

评论数 0

机器不学习:机器学习时代三大神器GBDT、XGBoost、LightGBM

本文主要简要的比较了常用的boosting算法的一些区别,从AdaBoost到LightGBM,包括AdaBoost,GBDT,XGBoost,LightGBM四个模型的简单介绍,一步一步从原理到优化对比。 AdaBoost原理 原始的AdaBoost算法是在算法开始的时候,为每一个样本赋上一个权...

2018-12-26 16:57:35

阅读数 46

评论数 0

IDEA中的几个术语

Facets:表示这个module有什么特征,比如 Web,Spring和Hibernate等; Artifact:是maven中的一个概念,表示某个module要如何打包,例如war exploded、war、jar、ear等等这种打包形式; ...

2018-12-13 14:47:31

阅读数 21

评论数 0

泰勒展开

泰勒展开的形式 泰勒公式是将一个在x=x0x=x_0x=x0​处具有n阶导数的函数f(x)f(x)f(x)利用关于(x−x0)(x-x_0)(x−x0​)的n次多项式来逼近函数的方法。 若函数f(x)f(x)f(x)在包含x0x_0x0​的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上...

2018-12-11 19:23:33

阅读数 20

评论数 0

RGB、YUV和HSV颜色空间模型

一、概述 颜色通常用三个独立的属性来描述,三个独立变量综合作用,自然就构成一个空间坐标,这就是颜色空间。但被描述的颜色对象本身是客观的,不同颜色空间只是从不同的角度去衡量同一个对象。颜色空间按照基本机构可以分为两大类:基色颜色空间和色、亮分离颜色空间。前者典型的是RGB,后者包括YUV和HSV等...

2018-12-07 10:42:42

阅读数 37

评论数 0

机器学习里必备的五种回归损失函数

所有的机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程。我们常常将最小化的函数称为损失函数,它主要用于衡量模型的预测能力。在寻找最小值的过程中,我们最常用的方法是梯度下降法,这种方法很像从山顶下降到山谷最低点的过程。 虽然损失函数描述了模型的优劣为我们提供了优化的方向,但却不存在一...

2018-11-29 19:21:07

阅读数 49

评论数 0

奇异值分解(SVD)原理详解及推导

在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来。...

2018-11-28 19:24:44

阅读数 29

评论数 0

矩阵分解

前面我们在矩阵分解 (加法篇)里面分析的加法下的矩阵分解。 这里我们来看看乘法下矩阵分解的要点。 对角和三角矩阵 首先, 我们总结下, 在矩阵加法分解中出现了三种矩阵:上三角矩阵, 下三角矩阵 和 对角阵。  这三种矩阵在乘法的分解中也会遇到。 那么是不是乘法矩阵中有这三种矩阵就够了呢?...

2018-11-28 19:10:19

阅读数 23

评论数 0

正则表达式总结

http://www.icoolxue.com/album/show/237 普通字符:字母、汉子、数字、下划线、没有特殊意义的标点和符号 表达式中的普通字符在匹配一个字符串的时候,匹配与之相同的一个字符 转义字符: 第一类:\n \t \ 第二类:^ $ . ( ) { } ? + * ...

2018-11-27 17:37:01

阅读数 36

评论数 0

简单算法之多项式回归

``` import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preproces...

2018-11-23 14:46:05

阅读数 43

评论数 0

前向神经网络的矩阵表示

前向神经网络的矩阵表示: Pf(Wxi)=oiPf(Wx_i)=o_iPf(Wxi​)=oi​ Pf(WX)=OPf(WX)=OPf(WX)=O 其中 1.X为输入集合,xix_ixi​为一条记录 2.O为输出集合,oio_ioi​为一条输出 2.W为第一层权重,P为隐藏层权重 3.f(x)为激活...

2018-11-23 12:00:59

阅读数 27

评论数 0

超限学习机(ExtremeLearningMachine,ELM)

超限学习机 import numpy as np import matplotlib.pyplot as plt x_num=100 w_num=16 x=np.linspace(-20,20,x_num) y=np.sin(x)/x w = np.random.rand(w_num, 2) - ...

2018-11-23 11:12:46

阅读数 71

评论数 0

特征值分解和奇异值分解

一、奇异值与特征值基础知识:     特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:    1)特征值:     如果说一个向量v是方阵A的特征向量,将一定可以表示成...

2018-11-22 17:34:59

阅读数 48

评论数 0

PCA

1、特征值与特征向量的意义解释 矩阵乘法其实是对应着一个线性变换,是把任意一个向量变成另一个方向或者长度的新向量。在这个变换中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,而不对这些向量产生旋转效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。 特...

2018-11-22 15:56:10

阅读数 32

评论数 0

矩阵分解

前面我们在矩阵分解 (加法篇)里面分析的加法下的矩阵分解。 这里我们来看看乘法下矩阵分解的要点。 对角和三角矩阵 首先, 我们总结下, 在矩阵加法分解中出现了三种矩阵:上三角矩阵, 下三角矩阵 和 对角阵。  这三种矩阵在乘法的分解中也会遇到。 那么是不是乘法矩阵中有这三种矩阵就够了呢?...

2018-11-22 15:07:48

阅读数 77

评论数 0

矩阵分解

矩阵An∗nA_{n*n}An∗n​为方阵(若不为方阵,则以下概念无意义): 非奇异矩阵 ⇔An∗n\Leftrightarrow A_{n*n}⇔An∗n​是奇异矩阵 ⇔An∗n\Leftrightarrow A_{n*n}⇔An∗n​可逆 ⇔∣An∗n∣≠0\Leftrightarrow|A...

2018-11-22 15:02:28

阅读数 23

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭