强化学习概述

文章介绍了机器学习在决策过程中的两种主要方法:不需要环境模型的Modelfree和需要建立环境模型的Modelbased。Modelbased允许预测和优化策略,如AlphaGo在围棋中的表现。此外,文章还讨论了基于策略与基于价值的学习,以及回合更新和单步更新的区别,同时提到了在线学习与离线学习的不同应用场景。
摘要由CSDN通过智能技术生成

一、Modelfree 和 Modelbased
Modelfree:不需要理解环境
Modelbased:需要理解环境,并且为环境建立模型

Model-free 中, 机器人只能按部就班, 一步一步等待真实世界的反馈, 再根据反馈采取下一步行动. 而 model-based, 他能通过想象来预判断接下来将要发生的所有情况. 然后选择这些想象情况中最好的那种. 并依据这种情况来采取下一步的策略, 这也就是 围棋场上 AlphaGo 能够超越人类的原因.

二、基于策略 和 基于价值
基于策略:目标为找到最佳的策略
基于价值:目标为最大化价值

我们现在说的动作都是一个一个不连续的动作, 而对于选取连续的动作, 基于价值的方法是无能为力的. 我们却能用一个概率分布在连续动作中选取特定动作, 这也是基于概率的方法的优点之一. 

三、回合更新 和 单步更新
回合更新:一局游戏更新一次
单步更新:每一步更新一次
四、在线学习 和 离线学习
在线学习:学习过程中必须和真是环境进行交互
离线学习:学习过程中只和历史数据进行交互

所谓在线学习, 就是指我必须本人在场, 并且一定是本人边玩边学习, 而离线学习是你可以选择自己玩, 也可以选择看着别人玩, 通过看别人玩来学习别人的行为准则, 离线学习 同样是从过往的经验中学习, 但是这些过往的经历没必要是自己的经历, 任何人的经历都能被学习.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值