python 中 常用到的 numpy 函数 整理

1. 创建二维数组  array()   :

set = array([[1., 2, ],[3., 4.],[5., 6.],[7., 9.]])


求 数组的 行数:

>>> set.shape[0]
4

求 数组的列数:

>>> set.shape[1]


>>> set.shape
(4, 2)

>>> set.dtype
dtype('float64')

记得 >>> from numpy import * 


2  empty() 函数:

    >>> a = empty([2, 2])  
    >>> a  
    array([[  2.01269048e-313,   4.44659081e-323],  
           [  5.03965339e+223,   6.48588014e-310]])  
    >>> b = empty([2, 2], dtype = int)  
    >>> b  
    array([[19988563, 36534944],  
           [ 2460004,  2460004]])  
    >>> c = empty([2, 2], dtype = int, order = 'C')  
    >>> c  
    array([[19988581, 36534944],  
           [ 2460004,  2460004]])  
    >>> d = empty([2, 2], dtype = int ,order = 'F')  
    >>> d  
    array([[19857521,  2460004],  
           [36534944,  2460004]])  
    >>> 
最后一个参数,返回数组在内存中的存放顺序,

C代表C语言风格, row major

F代表····,column  major


3.  eye()

    >>> e1 = eye(2, 3, 0, dtype = int)  
    >>> e1  
    array([[1, 0, 0],  
           [0, 1, 0]])  
    >>> e2 = eye(3)  
    >>> e2  
    array([[ 1.,  0.,  0.],  
           [ 0.,  1.,  0.],  
           [ 0.,  0.,  1.]])  
    >>> e3 = eye(3, dtype = int)  
    >>> e3  
    array([[1, 0, 0],  
           [0, 1, 0],  
           [0, 0, 1]])  
    >>> e4 = eye(3, 1, dtype = int)  
    >>> e4  
    array([[1],  
           [0],  
           [0]])  
    >>> e5 = eye(3, k = 1, dtype = int)  
    >>> e5  
    array([[0, 1, 0],  
           [0, 0, 1],  
           [0, 0, 0]])  
    >>> e6 = eye(3, k = -1, dtype = int)  
    >>> e6  
    array([[0, 0, 0],  
           [1, 0, 0],  
           [0, 1, 0]])  
    >>>   

第一个参数N = 列数

第二个参数 M = 行数,省略代表M = N 

第三个参数 k 代表对角线位置, = 0 代表主对角线, +1就向右上方偏移1, -1 就向左下角偏移1

第四个参数表示类型 dtype 默认为 float 类型


4 。 创建 方阵 identity()

派生到我的代码片

    >>> i1 = identity(3)  
    >>> i1  
    array([[ 1.,  0.,  0.],  
           [ 0.,  1.,  0.],  
           [ 0.,  0.,  1.]])  
    >>> i2 = identity(3, dtype = int)  
    >>> i2  
    array([[1, 0, 0],  
           [0, 1, 0],  
           [0, 0, 1]])  
    >>>   

只有两个参数,第一个表示 行(列)数,第二个表示类型(默认为float)类型


5.  生成一个元素全为1的数组

    >>> o1 = ones(3)  
    >>> o1  
    array([ 1.,  1.,  1.])  
    >>> o1.shape  
    (3,)  

要指定完整的shape(完整的行数和列数)的话
    >>> o4 = ones( (2, 3), dtype = int)  
    >>> o4  
    array([[1, 1, 1],  
           [1, 1, 1]])  
    >>>   

6. zeros() 全是0 的矩阵

from numpy import *
>>> z1 = zeros(3)  
>>> z1  
array([ 0.,  0.,  0.])  
>>> z1.shape  
(3,)  
>>> z2 = zeros((2, 3), dtype = int)  
>>> z2  
array([[0, 0, 0],  
       [0, 0, 0]])  
>>> z2.shape  
(2, 3)  
>>> s = (3, 2)  
z4 = zeros(s)  
>>> z4  
array([[ 0.,  0.],  
       [ 0.,  0.],  
       [ 0.,  0.]])  
>>> z4.shape  
(3, 2)


ones_like()  zeros_like()




>>>> from numpy import * 
>>> s = (3, 2)
>>> a = array(s)
>>> a array([3, 2])
>>> a.shape (2,)
>>> z = zeros(s, dtype = int)
>>> zz = zeros_like(z)
>>> zz array([[0, 0],
 [0, 0],
  [0, 0]])
>>> ooo = ones_like(z)
>>> ooo = ones_like(z)
>>> ooo array([[1, 1],
 [1, 1],
 [1, 1]])
>>>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值