zkw线段树分析

具体内容见 ppt《统计的力量》

我目前能解决的问题有 

1.单点更新+区间求和/求最值

2.区间加减一个数+区间求最值

前缀和的前缀和无思路

1.单点更新+区间求和/求最值

注意此实现在存储的时候从 M+1 开始存

即对于下图 分别从5和9开始存储到6和14  另说明了zkw线段树在存储上是堆的结构


代码以hdu1754为例


#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 200000;
int T[maxn<<2];
int M;
#define PUSHUP(x) T[x] = max(T[x+x],T[x+x+1])
void build_tree(int n)
{
    for(M=1;M <= n+1;M<<=1);
    memset(T,0,sizeof(int) * (M+M));
    for(int i = 1;i<=n;i++)
        scanf("%d",T+i+M);
    for(int i = (M+n)/2;i;i--)
        PUSHUP(i);
}
int query_tree(int s,int t)
{
    int ans = 0;
    for(s = s+M-1,t=t+M+1;s^t^1;s>>=1,t>>=1)
    {
        if(~s&1) ans = max(ans,T[s^1]);
        if(t&1) ans = max(ans,T[t^1]);
    }
    return ans;
}
void fix_tree(int p,int v)
{
    for(T[p+=M]=v,p>>=1;p;p>>=1)
        PUSHUP(p);
}
int main()
{
    int n,m,a,b;
    char op[5];
    while(~scanf("%d%d",&n,&m))
    {
        build_tree(n);
        while(m--)
        {
            scanf("%s%d%d",op,&a,&b);
            if(op[0]=='Q')printf("%d\n",query_tree(a,b));
            else fix_tree(a,b);
        }
    }
}

2.区间加减一个数+区间求最值

即利用差分思路

维护这样一种树

例如 a是b,c的父节点  那么 a = max(b,c);b -= a; c-=a;

上面是求最大值 求最小值改成min即可

以3 9 5 8为例

[图片]

求max的源码 min与之类似

#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 200000;
int T[maxn<<2];
int M;
void build_tree(int n)
{
    for(M=1;M<=n+1;M<<=1);
    memset(T,0,sizeof(int)*(M+M));
    for(int i = 1;i<=n;i++)
        scanf("%d",T+i+M);
	int A;
    for(int i = (n+M)/2;i;i--)
    {
	    A = max(T[i+i],T[i+i+1]);T[i+i] -= A;T[i+i+1] -=A;T[i] += A;
	}
}

int query_tree(int s,int t)
{
    int Lans=0,Rans=0,ans=0;
    for(s=s+M,t=t+M;s^t^1;s>>=1,t>>=1)
    {
        Lans += T[s];
        Rans += T[t];
        if(~s&1)Lans = max(Lans,T[s^1]);
        if(t&1) Rans = max(Rans,T[t^1]);
    }
    ans = max(Lans,Rans);
    while(s>1)ans += T[s>>=1];
    return ans;
}
void fix_tree(int s,int t,int x)
{
    int A;
    for(s=s+M-1,t=t+M+1;s^t^1;s>>=1,t>>=1)
    {
        if(~s&1) T[s^1]+=x;
        if(t&1) T[t^1]+=x;
        A = max(T[s],T[s^1]);T[s]-=A;T[s^1]-=A;T[s>>1]+=A;
        A = max(T[t],T[t^1]);T[t]-=A;T[t^1]-=A;T[t>>1]+=A;
    }
    for(;s>1;s>>=1)
    {
        A = max(T[s],T[s^1]);T[s]-=A;T[s^1]-=A;T[s>>1]+=A;
    }
}
int main()
{
    int n;
    cin >> n;
    build_tree(n);
//    for(int i = 0;i<=50;i++)
//        cout << i<<":"<<T[i]<<endl;
//    cout << query_tree(1,14)<<endl;
//    fix_tree(2,4,2); 
//   fix_tree(3,5,2);
//    fix_tree(4,6,2);    
//    cout << query_tree(1,14)<<endl;
    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值