[leetcode]Minimum Path Sum

136 篇文章 0 订阅
117 篇文章 0 订阅

Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

 很简单的DP问题,只要看下DP的经典例题,转配线调度问题之后,这道题就很简单了。

题中说道只能向下或者向右走,因此到终点[m][n]要么从上面[m][n - 1]走下来,要么从左边[m - 1][n]走过来,看这两条路那条更短,如果上面的短,那么将[m][n - 1]当做终点。继续做这样的操作(因为本题目满足最优子结构)

 

    public int minPathSum(int[][] grid) {
		if(grid == null){
			return 0;
		}
		int row = grid.length;
		int column = grid[0].length;
		int max = row > column ? row : column;
		int min = row + column - max;
		int[][] result = new int[row][column];
		result[0][0] = grid[0][0];
		int i = 1;
		for(; i < max; i++){
			if(i < row){
				result[i][0] = result[i - 1][0] + grid[i][0];
			 }
			if(i < column){
				result[0][i] = result[0][i - 1] + grid[0][i];
			}
		}
		
		for(i = 1; i < row; i++){
			for(int j = 1; j < column; j++){
				result[i][j] = grid[i][j] + (result[i][j - 1] > result[i - 1][j] ?  result[i - 1][j] : result[i][j - 1]); 
			}
		}
		return result[row - 1][column - 1];
	}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值