-
科技进步的历程:第二章详细回顾了自然语言处理领域的发展历程,从最早的规则系统到如今的统计和深度学习方法。通过这一历史,我们可以清楚地看到科技领域的进步是如何逐步积累的。
-
规则与统计的对比:书中将传统的规则-based 方法和新兴的统计-based 方法进行了对比,解释了它们的优点和局限性。这个对比有助于读者更好地理解为什么统计方法在NLP中变得如此重要。
-
技术的影响力:本章还强调了NLP技术在当今世界的广泛应用,从搜索引擎到智能助手,再到机器翻译等。这让人们能够认识到,NLP不仅仅是学术研究领域的一个话题,它已经深刻地改变了我们的日常生活。
-
数学与实际应用的联系:通过这一章,w我们可以更好地理解数学与实际应用之间的密切联系。无论是基于规则还是基于统计的方法,都需要数学的支持和理解。
命名规范:
- 变量和函数名使用有意义的名词或动词,采用驼峰命名法(camelCase)或下划线分隔命名法(snake_case)。
- 类名使用帕斯卡命名法(PascalCase)。
例如:
# 驼峰命名法
userName = "JohnDoe"
calculateTotalPrice()
# 下划线分隔命名法
user_name = "JohnDoe"
calculate_total_price()
缩进和空格:
- 使用一致的缩进风格(通常是4个空格或制表符)。
- 在运算符周围添加空格,使代码更易读。
例如:
if x > 5:
result = a + b
注释:
- 添加清晰的注释,解释代码的关键部分和逻辑。
- 使用注释来说明代码的目的、输入和输出等信息。
例如:
# 计算并返回两个数字的和
def add_numbers(a, b):
return a + b
-
函数和方法:
- 函数和方法应该短小而专注于单一任务。
- 使用描述性的函数和方法名。
- 避免使用全局变量。
-
错误处理:
- 善用异常处理机制,避免使用裸露的异常。
- 使用适当的错误消息,以便于调试和维护。
-
模块和包:
- 将代码模块化,使用合适的模块和包来组织代码。
- 遵循命名约定来命名模块和包。
-
代码格式化:
- 使用代码格式化工具,如Prettier(JavaScript/TypeScript)、Black(Python)、或clang-format(C/C++)等,以确保一致的代码样式。
-
版本控制:
- 使用版本控制系统(如Git)来跟踪代码更改,并编写有意义的提交消息。
-
文档:
- 为代码和项目编写文档,包括README文件,以便其他开发人员可以理解项目的目的和如何使用它。
-
测试:
- 编写单元测试和集成测试,以确保代码的质量和稳定性。