题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
输入样例#1:
5 4
3
4
2
1
4
输出样例#1:
1
分析
s[i]为前缀和
g[i]=s[i]+i;
cmp为:
((f[p]+g[p]2)−(f[q]+g[q]2))/(2∗(g[p]−g[q]))
当cmp(p,q)< g[i]-L时
q比p更优
AC代码
#include<cstdio>
#include<iostream>
#define N 50010
using namespace std;
typedef long long LL;
int n,m,Q[N],h,t,p;
LL f[N],s[N],g[N],num;
double cmp(int p,int q){
return ((double)(f[p]+g[p]*g[p])-(f[q]+g[q]*g[q]))/(2*(g[p]-g[q]));
}
int main(){
freopen("data.txt","r",stdin);
scanf("%d%d",&n,&m);
h=t=1;
for(int i=1;i<=n;i++){
scanf("%d",&p);
s[i]=s[i-1]+p;
g[i]=s[i]+i;
while(t-h>=1&&cmp(Q[h],Q[h+1])<g[i]-m)h++;
num=s[i]-s[Q[h]]+i-Q[h]-1-m;
f[i]=f[Q[h]]+num*num;
while(t-h>=1&&cmp(Q[t-1],Q[t])>cmp(Q[t],i))t--;
Q[++t]=i;
}
cout<<f[n]<<'\n';
}