解题思路:本题可以看作是递推也可以看作是dp,dp问题常用终局思维来解,设dp[n]表示要铺满2*n的方格的方案个数,假若第n个方格是竖直放置,那么此时dp[n]的个数等价于dp[n-1]的方案个数。若第n个方格横着放置,那么第n-1个方格也需要横着放置,此时dp[n]的个数等价于dp[n-2]的方案个数。故状态转移方程为dp[n] = dp[n-1]+dp[n-2]。其中dp[0] = 0, dp[1] = 1, dp[2] = 2。
#include <stdio.h>
long long dp[51];
void init()
{
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= 50; i++)
dp[i] = dp[i-1] + dp[i-2];
}
int main()
{
init();
int n;
while(scanf("%d", &n) != EOF)
printf("%lld\n", dp[n]);
return 0;
}