PAT--1045 Favorite Color Stripe(最长公共子序列、最长递增子序列)

第一种思路可以看作是LCS的变种,也就是有元素可以重复。
一般的最长公共子序列的状态转移公式是
if(s1[i] == s2[j]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1])
对于本题来说,s2(也就是给定的颜色序列)中元素会重复,故状态转移公式要变化,即也就是当s1[i] == s2[j] 的时候,有可能s2[j-1] == s2[j],此时dp[i][j] = max(dp[i][j-1]+1, dp[i-1][j-1]+1)。
参考:https://blog.csdn.net/tiantangrenjian/article/details/19921051

//最长公共子序列
#include <stdio.h>

int list1[201];
int list2[10001];
int dp[201][10001];

int max (int x, int y)
{
    return x > y ? x : y;
}

int main()
{
    int n, m;
    scanf("%d", &n);
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
        scanf("%d", &list1[i]);
    scanf("%d", &m);
    for(int j = 1; j <= m; j++)
        scanf("%d", &list2[j]);

    for(int i = 0; i <= n; i++)  dp[i][0] = 0;
    for(int j = 0; j <= m; j++)  dp[0][j] = 0;

    int tmp = 0;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        {
            if(list1[i] != list2[j])
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            else
                dp[i][j] = max(dp[i-1][j-1]+1, dp[i][j-1]+1);
        }
    printf("%d\n", dp[n][m]);
    return 0;
}

第二种思路是用LIS(最长不递减子序列来做)
最长递增子序列,是要比较元素的值,本题要用LIS来做,就要想办法构造颜色对应的值,虽然题目也用数字来表示颜色,但那仅仅用来表示颜色而已,所以还要想办法为每种颜色赋予一定的权值,然后根据给定的颜色序列,找到最长递增子序列。
那么如何为颜色构造权值?由于作责喜欢的颜色顺序是不变的,而且没有重复,故可以根据作者喜欢的颜色顺序,根据每个颜色的编号构造权值。要在给定的颜色序列中找到作者喜欢的最长的序列,先将作者不喜欢的颜色剔除,之后在剔除后的颜色列表中寻找最长递增子序列。
参考:https://www.cnblogs.com/A-Little-Nut/p/8321753.html

#include <stdio.h>
#include <map>

using namespace std;

int list[10001];
int dp[10001];
map<int, int> dict;

int max (int x, int y)
{
    return x > y ? x : y;
}

int main()
{
    int n, m;
    scanf("%d", &n);
    scanf("%d", &n);
    int k;
    for(int i = 0; i < n; i++)
    {
        scanf("%d", &k);
        dict[k] = i;   //每种颜色的权值为其下标
    }

    scanf("%d", &m);
    int id = 0;
    for(int j = 0; j < m; j++)
    {
        scanf("%d", &k);
        if(dict.count(k) == 1)   //如果在喜欢颜色的列表中可以找到,也就是剔除不喜欢的颜色。
            list[id++] = dict[k];
    }

    for(int i = 0; i < id; i++)
    {
        dp[i] = 1;   //以i结尾的最长递增子序列长度至少为1
        for(int j = 0; j < i; j++)
            if(list[i] >= list[j])
               dp[i] = max(dp[i], dp[j]+1);
    }
    int ans = 1;
    for(int i = 0; i < id; i++)
        ans = max(ans, dp[i]);
    printf("%d\n", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值