第一种思路可以看作是LCS的变种,也就是有元素可以重复。
一般的最长公共子序列的状态转移公式是
if(s1[i] == s2[j]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j], dp[i][j-1])
对于本题来说,s2(也就是给定的颜色序列)中元素会重复,故状态转移公式要变化,即也就是当s1[i] == s2[j] 的时候,有可能s2[j-1] == s2[j],此时dp[i][j] = max(dp[i][j-1]+1, dp[i-1][j-1]+1)。
参考:https://blog.csdn.net/tiantangrenjian/article/details/19921051
//最长公共子序列
#include <stdio.h>
int list1[201];
int list2[10001];
int dp[201][10001];
int max (int x, int y)
{
return x > y ? x : y;
}
int main()
{
int n, m;
scanf("%d", &n);
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d", &list1[i]);
scanf("%d", &m);
for(int j = 1; j <= m; j++)
scanf("%d", &list2[j]);
for(int i = 0; i <= n; i++) dp[i][0] = 0;
for(int j = 0; j <= m; j++) dp[0][j] = 0;
int tmp = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
if(list1[i] != list2[j])
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
else
dp[i][j] = max(dp[i-1][j-1]+1, dp[i][j-1]+1);
}
printf("%d\n", dp[n][m]);
return 0;
}
第二种思路是用LIS(最长不递减子序列来做)
最长递增子序列,是要比较元素的值,本题要用LIS来做,就要想办法构造颜色对应的值,虽然题目也用数字来表示颜色,但那仅仅用来表示颜色而已,所以还要想办法为每种颜色赋予一定的权值,然后根据给定的颜色序列,找到最长递增子序列。
那么如何为颜色构造权值?由于作责喜欢的颜色顺序是不变的,而且没有重复,故可以根据作者喜欢的颜色顺序,根据每个颜色的编号构造权值。要在给定的颜色序列中找到作者喜欢的最长的序列,先将作者不喜欢的颜色剔除,之后在剔除后的颜色列表中寻找最长递增子序列。
参考:https://www.cnblogs.com/A-Little-Nut/p/8321753.html
#include <stdio.h>
#include <map>
using namespace std;
int list[10001];
int dp[10001];
map<int, int> dict;
int max (int x, int y)
{
return x > y ? x : y;
}
int main()
{
int n, m;
scanf("%d", &n);
scanf("%d", &n);
int k;
for(int i = 0; i < n; i++)
{
scanf("%d", &k);
dict[k] = i; //每种颜色的权值为其下标
}
scanf("%d", &m);
int id = 0;
for(int j = 0; j < m; j++)
{
scanf("%d", &k);
if(dict.count(k) == 1) //如果在喜欢颜色的列表中可以找到,也就是剔除不喜欢的颜色。
list[id++] = dict[k];
}
for(int i = 0; i < id; i++)
{
dp[i] = 1; //以i结尾的最长递增子序列长度至少为1
for(int j = 0; j < i; j++)
if(list[i] >= list[j])
dp[i] = max(dp[i], dp[j]+1);
}
int ans = 1;
for(int i = 0; i < id; i++)
ans = max(ans, dp[i]);
printf("%d\n", ans);
return 0;
}