Hadoop MapReduce 简单案例--求平均值

Hadoop中MapReduce模式简单求平均值案例。

代码:

import java.io.IOException;  
import java.util.StringTokenizer;  
import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.LongWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapreduce.Job;  
import org.apache.hadoop.mapreduce.Mapper;  
import org.apache.hadoop.mapreduce.Reducer;  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
import org.apache.hadoop.util.GenericOptionsParser;  
public class Sum {  
      
    public static class SumMapper extends  
            Mapper<Object, Text, Text, LongWritable> {  
        private Text word = new Text("sum");  
        private static LongWritable numValue = new LongWritable(1);  
        public void map(Object key, Text value, Context context)  
                throws IOException, InterruptedException {  
            StringTokenizer itr = new StringTokenizer(value.toString());  
            long sum = 0,sum2=0;  //sum为每次读入的数,sun2为每行的个数
            while (itr.hasMoreTokens()) {  
                String s = itr.nextToken();  
                long val = Long.parseLong(s);  
                sum += val;  
                sum2++;
            }  
            numValue.set(sum/sum2);
            word.set("average");
            context.write(word, numValue);  
        }  
    }  
    public static class SumReducer extends  
            Reducer<Text, LongWritable, Text, LongWritable> {  
        private LongWritable result = new LongWritable();  
        private Text ave = new Text("average");  
        public void reduce(Text key, Iterable<LongWritable> values,  
                Context context) throws IOException, InterruptedException {  
            long sum = 0,count=0;  //sum为每行计算出来的平均值,count为行数
            for (LongWritable val : values) {  
                long v = val.get();  
                sum += v;  
                count++;
            }  
            result.set(sum/count);  
            context.write(ave, result);  
        }  
    }  

    public static void main(String[] args) throws Exception {  
        Configuration conf = new Configuration();  
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();  
        if (otherArgs.length != 2) {  
            System.err.println("Usage: numbersum <in> <out>");  
            System.exit(2);  
        }  
        long startTime=System.currentTimeMillis();//计算时间
        Job job = new Job(conf, "number sum");  
         job.setJarByClass(Sum.class);  
        job.setMapperClass(SumMapper.class);  
        job.setReducerClass(SumReducer.class);  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(LongWritable.class);  
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));  
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));  
        job.waitForCompletion(true) ;
        long endTime=System.currentTimeMillis();
        System.out.println("time="+(endTime-startTime));
        System.exit(0);  
    }  
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值