Description
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
Input
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
Output
输出不同的选择物品的方式的数目。
Sample Input
3
20
20
20
Sample Output
3
HINT
最基本的01背包问题
Source
①递归方法import java.util.Scanner;
public class Main {
static int[] a=new int[100];
static int f(int n,int w){
if(w==0)
return 1;//如果让拿的物品总重量为0,则有一种方法,即什么也不拿
if(n<=0)
return 0;//如果让拿的总重量小于等于0就无意义了,一种方法也没有
return f(n-1,w)+f(n-1,w-a[n]);
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
for (int i = 1; i <= n; i++) {
a[i] = s.nextInt();
}
System.out.println(f(n,40));
}
}
②动态规划
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int[] a = new int[n + 1];
int[][] dp = new int[n + 1][41];// dp[i][j]表示从前i种物品拿出体积j的方法数
for (int i = 1; i <= n; i++) {
a[i] = s.nextInt();
dp[i][0] = 1;//如果让拿的物品总重量为0,则有一种方法,即什么也不拿
}
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= 40; j++) {
dp[i][j] = dp[i - 1][j];
if (j >= a[i])
dp[i][j] += dp[i - 1][j - a[i]];
}
}
System.out.println(dp[n][40]);
}
}