YTU OJ 3141: 动态规划进阶题目之神奇的口袋(Java解题)

198 篇文章 54 订阅

Description

有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。

Input

输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。

Output

输出不同的选择物品的方式的数目。

Sample Input

3
20
20
20

Sample Output

3

HINT

最基本的01背包问题

Source

POJ


①递归方法

import java.util.Scanner;
public class Main {
	static int[] a=new int[100];
    static int f(int n,int w){
		if(w==0) 
			return 1;//如果让拿的物品总重量为0,则有一种方法,即什么也不拿
		if(n<=0)
			return 0;//如果让拿的总重量小于等于0就无意义了,一种方法也没有
		return f(n-1,w)+f(n-1,w-a[n]);
	}
	public static void main(String[] args) {
		Scanner s = new Scanner(System.in);
		int n = s.nextInt();
		for (int i = 1; i <= n; i++) {
			a[i] = s.nextInt();
		}
		System.out.println(f(n,40));
	}
}


②动态规划

import java.util.Scanner;

public class Main {

	public static void main(String[] args) {
		Scanner s = new Scanner(System.in);
		int n = s.nextInt();
		int[] a = new int[n + 1];
		int[][] dp = new int[n + 1][41];// dp[i][j]表示从前i种物品拿出体积j的方法数
		for (int i = 1; i <= n; i++) {
			a[i] = s.nextInt();
			dp[i][0] = 1;//如果让拿的物品总重量为0,则有一种方法,即什么也不拿
		}
		dp[0][0] = 1;
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= 40; j++) {
				dp[i][j] = dp[i - 1][j];
				if (j >= a[i])
					dp[i][j] += dp[i - 1][j - a[i]];
			}
		}
		System.out.println(dp[n][40]);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值