蓝桥杯 算法提高 矩阵乘法(Java解题)

问题描述
  有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要将它们依次相乘,只能使用结合率,求最少需要多少次运算。
  两个大小分别为p*q和q*r的矩阵相乘时的运算次数计为p*q*r。
输入格式
  输入的第一行包含一个整数n,表示矩阵的个数。
  第二行包含n+1个数,表示给定的矩阵。
输出格式
  输出一个整数,表示最少的运算次数。
样例输入
3
1 10 5 20
样例输出
150
数据规模和约定

  1<=n<=1000, 1<=ai<=10000。


dp[i][j]表示从i到j矩阵乘积的次数

dp[i][j]=min(dp[i][j],dp[i][k] + dp[k + 1][j] + a[i - 1] * a[k] * a[j])

第一次将dp设为int型只对了40%,设为long后对了70%



代码:

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner x = new Scanner(System.in);
		int n = x.nextInt();
		int a[] = new int[1010];
		for (int i = 0; i < n + 1; i++) {
			a[i] = x.nextInt();
		}
		if (n == 1)
			System.out.println(a[0] * a[1]);
		long dp[][] = new long[1010][1010];
		long sum;
		for (int i = 0; i <= n; i++)
			for (int j = 0; j <= n; j++)
				dp[i][j] = 1000000000;
		for (int j = 2; j <= n; j++) {
			for (int i = j - 1; i > 0; i--) {
				dp[i][i] = dp[j][j] = 0;
				for (int k = i; k < j; k++) {
					sum = dp[i][k] + dp[k + 1][j] + a[i - 1] * a[k] * a[j];
					if (sum < dp[i][j])
						dp[i][j] = sum;
				}
			}
		}
		System.out.println(dp[1][n]);
	}
}


展开阅读全文

没有更多推荐了,返回首页