蓝桥杯 算法提高 概率计算(Java解题)

112 篇文章 7 订阅

问题描述
  生成n个∈[a,b]的随机整数,输出它们的和为x的概率。
输入格式
  一行输入四个整数依次为n,a,b,x,用空格分隔。
输出格式
  输出一行包含一个小数位和为x的概率,小数点后保留四位小数
样例输入
2 1 3 4
样例输出
0.3333
数据规模和约定
  对于50%的数据,n≤5.
  对于100%的数据,n≤100,b≤100.

【解析】:此题使用动态规划思想求解,dp[i][j]表示生成i个数和为j的概率。则此题最终求解的为dp[n][x]。

dp[i][k]可以想成i-1个数和为k-j时再加j。只有当k>j时才成立即k-j>0。

每个数出现的概率为1/(b-a+1)。

【代码】:

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int a = sc.nextInt();
		int b = sc.nextInt();
		int x = sc.nextInt();
		double dp[][] = new double[101][10000];
		for (int j = a; j <= b; j++) {
			dp[1][j] = (1.0 / (b - a + 1));// 生成1个数字和为a到b之间的概率为1/(b-a+1)
		}
		for (int i = 2; i <= n; i++) {
			for (int j = a; j <= b; j++) {
				for (int k = 1; k <= x; k++) {
					if (k - j > 0)
						dp[i][k] += dp[i - 1][k - j] * 1.0 / (b - a + 1);// 生成i个数和为k的概率
				}
			}
		}
		System.out.printf("%.4f", dp[n][x]);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值