时间复杂度和空间复杂度
主要是从算法所占用的「时间」和「空间」两个维度去考量。
- 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
- 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述。
一、时间复杂度
1.「 大O符号表示法 」,即 T(n) = O(f(n)) ;
其中f(n) 表示每行代码执行次数之和,而 O 表示正比例关系,这个公式的全称是:算法的渐进时间复杂度。
例如:
for(i=1; i<=n; ++i)
{
j = i;
j++;
}
假设:这段代码每行的的执行时间都是一样的,我们用s来表示,那么第一行代码的执行时间就是1颗粒时间,第三行代码的的执行时间是:n x s ,因为要循环n次,第四行代码的执行时间也是n颗粒时间,所以,这段代码的总执行时间是:(1+n+n)x s,合并一下就是:(1+2n) x s: 所以可得: T(n)=(1+2n) x s 。
从这个公式中可以看出,这个算法的耗时是跟随n的变化而变化的,当n变为无限大的时候,常量1就没有意义了,倍数2也没有意义了。所以就可以简化为 : T(n)=O(n)。
2.常见的时间复杂度量级有:
常数阶O(1)
对数阶O(logN)
线性阶O(n)
线性对数阶O(nlogN)
平方阶O(n²)
立方阶O(n³)
K次方阶O(n^k)
指数阶(2^n)
上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。
(1.) 常数阶O(1)
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),如:
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
(2.) 线性阶O(n)
这个在最开始的示例中就讲解过了,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。 如:
for(i=1; i<=n; ++i)
{
j = i;
j++;
}
(3.) 对数阶O(logN)
例如:
int i = 1;
while(i<n)
{
i = i * 2;
}
(5.) 平方阶O(n²)
如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 平方阶了。
例如:双重for循环
for(x=1; i<=n; x++)
{
for(i=1; i<=n; i++)
{
j = i;
j++;
}
}
上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么对公式开方以后,就是 x = log2^n ,也就是说当循环 log2^n 次以后,这个代码就结束了。因此这个代码最终0的时间复杂度为:O(logn) 。
(4.) 线性对数阶O(nlogN)
根据上面的例子,线性对数阶O(nlogN) 就非常容易理解了,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。
for(m=1; m<n; m++)
{
i = 1;
while(i<n)
{
i = i * 2;
}
}
如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m*n) ,即:
for(x=1; x<=m; x++)
{
for(i=1; i<=n; i++)
{
j = i;
j++;
}
}
(6.) 立方阶O(n³)、K次方阶O(n^k)
结合上面的例子,
O(n³)就是在O(n²)基础上再嵌套一层循环,
O(n^k)就是嵌套K次循环。
除此之外,其实还有 平均时间复杂度、均摊时间复杂度、最坏时间复杂度、最好时间复杂度 的分析方法,有点复杂,暂时不做赘述。
二、空间复杂度
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的一个量度,同样反映的是一个趋势,我们用 S(n) 来定义。
空间复杂度比较常用的有:O(1)、O(n)、O(n²),我们下面来看看:
(1.) 空间复杂度 O(1)
如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)
举例:
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)
(2.) 空间复杂度 O(n)
我们先看一个代码:
int[] m = new int[n]
for(i=1; i<=n; ++i)
{
j = i;
j++;
}
这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)。