一次算法应用记录

适配一个测温模块,由于受环境温度影响,测温模块得到的数据不是精确的人体温度,需要做适当的校准。如何获取校准的偏移值呢?

通过大样本统计,通过分析样本数据,在数据中低概率出现坏数据,如果不提出,很大影响正确的数据,那么该如何剔除呢?这是就需要使用统计学中的算法:标准差、正态分布。

剔除坏数据的方法

  1. 平均值法

比较粗略的方法是:样本数据取平均值,然后把偏差值过大的数据剔除。从理论上可以剔除一些,但是准确性未找到理论支撑。

为了数据更准确,想要获取大数据中比较集中的数据且总数据中占60%或者更高比率的数据时,该如何做?

  1. 标准差、正态分布方法
    标准差、正态分布是统计学中已经被证明的且经常使用的统计筛选算法,正确性可以不做怀疑。简单说明如下:
    在这里插入图片描述
正态分布

在这里插入图片描述
在这里插入图片描述
如果需要获取平准值周围的68%的数据,可以使用如下公式:

平均值为:u
标准差为:a
u-a < 取值范围 < u+a

若需要在大样本中获取不同范围的数据,给标准差a乘以不同的系数,然后筛选需要的数据。
也可以对标准差做限定,判断数据的离散度,若离散度不符合需要,可以重新统计和筛选数据。
在这里插入图片描述
离散度高,说明数据波动比较大。

总结

大学毕业后,算法应用的机会太少了,终于用上了一次,感慨颇多呀。基本也忘得 差不多了!以后得多翻翻书了,至少记住名词和作用,数据统计分析,挺好玩!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值