Haar人脸检测:Haar特征 + Adaboost+ 级联分类器及改进

本文详细介绍了人脸检测的实现原理,包括Haar特征的提取、Adaboost算法以及级联分类器的应用。通过改进的Haar特征和AdaBoost算法,提高人脸检测的准确性和效率。文章还涵盖了代码实现和相关算法的改进思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

内容目录

1.人脸检测的实现原理 

1.人脸区域的特征提取

 2.图片中的人脸锁定        

3.cascade级联分类器

2.Adaboost与cascade

3.代码实现

4.Haar特征提取以及AdaBoost算法的改进

1.Haar特征提取改进

2.AdaBoost算法改进


前言

最近准备开始系统的学习AI,之前都是零零散散的在用一些SVM这些,对其架构原理一知半解
人脸检测的流程概括: Haar提取特征 + Adaboost + cascade级联分类器

内容目录

1.人脸检测的实现原理 
2.Adaboost与cascade
3.代码实现
4.Haar特征提取以及AdaBoost算法的改进

1.人脸检测的实现原理 

1.人脸区域的特征提取

        以Haar特征分类器为基础的对象检测技术是一种非常有效的对象检测技术,多用于人脸检测、行人检测等。Haar-like特征是计算机视觉领域一种常见的特征描述算子,也叫做Haar特征。
        Haar 特征就是用下图中的黑白矩形掩膜中 所有黑色区域对应灰度人脸图像素值sum - 白色区域像素值sum,通过这些可在一定程度上体现人脸灰度分布特征。
 

         比如第一排的黑白矩形掩膜可以提取边缘特征  第二排提取线条特征 第三排提取中点特征,一共14个特征掩膜在上图红框内滑动 通过平移、放大提取特征。比如论文《Rapid Object Detection using a Boosted Cascade of Simple Features》中单个掩膜矩形为24*24像素,则一张图片可获得超过180000个特征。
        Haar特征值反应了图像的灰度变化情况,当然如果每张图检测中要通过至少180000个特征去匹配太过于繁杂,也不可能应用。
        所以能不能从这180000取出 部分有效性最强的 一些特征结合起来用于分类,其他的全部舍弃。比如脸部的一些特征 可以 通过矩形特征简单描述: 嘴巴比周围颜色深,眼睛要比脸颊颜色深,鼻梁两侧要比鼻梁颜色深。

        为了提取出这些有效性最强的特征,进行了如下实验:将180000中所有特征 应用于某数据集中的所有图像(正样本为人脸照,负样本为非人脸照),。然后统计180000个特征中所有特征的错误率,选取错误率最低的那部分特征,作者最终从180000中选取了最好的6061个特征,说明这6061个特征市 界定 人脸 和非人脸图像 有效性最强错误率最低的特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值