目录
前言
最近准备开始系统的学习AI,之前都是零零散散的在用一些SVM这些,对其架构原理一知半解
人脸检测的流程概括: Haar提取特征 + Adaboost + cascade级联分类器
内容目录
1.人脸检测的实现原理
2.Adaboost与cascade
3.代码实现
4.Haar特征提取以及AdaBoost算法的改进
1.人脸检测的实现原理
1.人脸区域的特征提取
以Haar特征分类器为基础的对象检测技术是一种非常有效的对象检测技术,多用于人脸检测、行人检测等。Haar-like特征是计算机视觉领域一种常见的特征描述算子,也叫做Haar特征。
Haar 特征就是用下图中的黑白矩形掩膜中 所有黑色区域对应灰度人脸图像素值sum - 白色区域像素值sum,通过这些可在一定程度上体现人脸灰度分布特征。
比如第一排的黑白矩形掩膜可以提取边缘特征 第二排提取线条特征 第三排提取中点特征,一共14个特征掩膜在上图红框内滑动 通过平移、放大提取特征。比如论文《Rapid Object Detection using a Boosted Cascade of Simple Features》中单个掩膜矩形为24*24像素,则一张图片可获得超过180000个特征。
Haar特征值反应了图像的灰度变化情况,当然如果每张图检测中要通过至少180000个特征去匹配太过于繁杂,也不可能应用。
所以能不能从这180000取出 部分有效性最强的 一些特征结合起来用于分类,其他的全部舍弃。比如脸部的一些特征 可以 通过矩形特征简单描述: 嘴巴比周围颜色深,眼睛要比脸颊颜色深,鼻梁两侧要比鼻梁颜色深。
为了提取出这些有效性最强的特征,进行了如下实验:将180000中所有特征 应用于某数据集中的所有图像(正样本为人脸照,负样本为非人脸照),。然后统计180000个特征中所有特征的错误率,选取错误率最低的那部分特征,作者最终从180000中选取了最好的6061个特征,说明这6061个特征市 界定 人脸 和非人脸图像 有效性最强错误率最低的特征。