背包问题的应用——(0/1背包,完全背包,多重背包)

参考链接:http://blog.csdn.net/wzy_1988/article/details/12260343


多重背包问题:参考:http://blog.csdn.net/LYHVOYAGE/article/details/8545852

将多重背包问题转化为0/1背包问题:http://blog.csdn.net/kyriesnow/article/details/44256701

给出了5种多重背包的解决办法http://blog.csdn.net/QiaoRuoZhuo/article/details/76259876

前言


对于背包问题的初始化的说明:参考:https://github.com/tianyicui/pack/blob/master/V2.pdf
这个是一个17页的pdf文档,里面详细讲了背包9讲的内容,结合本篇博客看

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同
1)如果是第一种问法,要求恰好装满背包,那么在初始化时除了 F [0] 0 ,其它 F [1 ::V ] 均设为 -1 ,这样就可以保证最终得到的 F [ V ] 是一种恰好装满背包的最优解。
2)如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 F [0 ::V ] 全部设为 0

这是为什么呢?可以这样理解:初始化的 F 数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可以在什么也不装且价值为 0 的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,应该被赋值为 -∞ 了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为 0 ,所以初始时状态的值也就全部为 0 了。



01背包


题目

有N件物品和一个容量为V的背包。第i建物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大

思路

这是最基础的背包问题,特点是:每种物品只有一件,可以选择放或者不放

用子问题定义状态:即dp[i][j]表示前i件物品放入一个容量为j的背包可以获得的最大价值。则其状态转移方程为:

[cpp]  view plain  copy
  1. dp[i][j] = max{dp[i - 1][j], dp[i - 1][j - c[i]] + w[i]}  

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来。这里详细解释一下:

将前i件物品放入容量为j的背包中这个子问题,若只考虑第i件物品的策略(放或者不放),那么就可以转换为一个只牵扯前i-1件物品的问题。
  • 如果不放第i件物品,那么问题就转换为前i-1件物品放入容量为j的背包中的最大价值,价值为dp[i - 1][j]
  • 如果放入第i件物品,那么问题就转换为前i-1件物品放入容量为j-c[i]的背包中,此时能获得的最大价值是dp[i-1][j-c[i]],再加上放入第i件物品获得的价值w[i]

优化空间复杂度

先考虑一下上面的状态转移方程如何实现,肯定有一个主循环i = 1...N,每次算出来二维数组dp[i][0..V]的所有值。那么如果只用一个数组f[0...V],能不能保证第i次循环结束后f[v]就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V...0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

[cpp]  view plain  copy
  1. for i  in 0 ... N  
  2.     for  v = V ... 0  
  3.         f[v] = max{f[v], f[v-c[i]] + w[i]}  


练习题目


代码:

[cpp]  view plain  copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4.  #include<math.h>
  5. #define N 1010  
  6.   
  7. int value[N], volume[N], dp[N];  
  8.   
  9. // 0-1背包,优化空间  
  10. void dpPackage(int n, int v)  
  11. {  
  12.     int i, j;  
  13.   
  14.     memset(dp, 0, sizeof(dp));  
  15.   
  16.     for (i = 1; i <= n; i ++) {  
  17.         for (j = v; j >= volume[i]; j --) //容量从大到小进行遍历,v表示背包的总容量,volume[i]表示第i个物品所占的空间
  18.   {
  19.    dp[j] =max(dp[j], dp[j - volume[i]] + value[i])  
  20.          }  
  21.     }  
  22.   
  23.     printf("%d\n", dp[v]);  
  24. }  
  25.   
  26. int main(void)  
  27. {  
  28.     int i, t, n, v;  //t表示use_case的数量,n表示物品的总数,v表示背包容量
  29.   
  30.     scanf("%d", &t);  
  31.   
  32.     while (t --) {  
  33.         // 接收参数  
  34.         scanf("%d %d", &n, &v);  
  35.   
  36.         for (i = 1; i <= n; i ++)    scanf("%d", value + i);  
  37.         for (i = 1; i <= n; i ++)    scanf("%d", volume + i);  
  38.   
  39.         // 0-1背包  
  40.         dpPackage(n, v);  
  41.     }  
  42.   
  43.     return 0;  
  44. }  


完全背包问题


题目

有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价格是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大

思路

这个问题类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略 已非取或不取两种,而且右取0件、取1件、取2件...等很多种。如果仍然按照01背包的思路,令dp[i][v]表示前i种物品恰好放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程:

[html]  view plain  copy
  1. dp[i][v] = max{dp[i-1][v - k * c[i]] + k * w[i] | 0 <= k * c[i]<= v}  

转化为01背包求解

最简单的想法是:考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转换为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。但是这样完全没有改进时间复杂度,但这毕竟给了我们将完全背包转换为01背包问题的思路:将一种物品拆成多件物品

O(VN)的算法

这个算法使用一维数组,先看伪代码:

[cpp]  view plain  copy
  1. for i = 1 ... N  //有的时候为了效率,可以将这两层循环进行互换
  2.     for v = 0 ... V  
  3.         f[v] = max{f[v], f[v-cost] + weight}  

你会发现,这个伪代码与01背包的伪代码只有v的循环次序不同而已。为什么这样一改就行呢?首先,想想为什么01背包问题中要按照v=V...0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说, 这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个肯定没有已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰好是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][c-v[i]],所以就可以并且必须采用v=0...V的顺序循环


练习题目


代码:

[cpp]  view plain  copy
  1. /** 
  2.  * 完全背包问题 
  3.  */  
  4.   
  5. #include <stdio.h>  
  6. #include <stdlib.h>  
  7.   
  8. #define INF 50000000  
  9.   
  10. typedef struct coin {  
  11.     int price, weight;  
  12. } coin;  
  13.   
  14. void dynamicPackage(coin *coins, int n, int v)  
  15. {  
  16.     if (v < 0) {  
  17.         printf("This is impossible.\n");  
  18.         return;  
  19.     }  
  20.   
  21.     int i, j, *dp;  
  22.   
  23.     // 动态分配内存  
  24.     dp = (int *)malloc(sizeof(int) * (v + 1));  
  25.   
  26.     // 初始化  
  27.     dp[0] = 0;  
  28.     for (i = 1; i <= v; i ++)    dp[i] = INF;  
  29.   
  30.     // 完全背包问题  
  31.     for (i = 1; i <= n; i ++) {  
  32.         for (j = coins[i].weight; j <= v; j ++) //和0/1背包的区别,仅仅在于这层循环的顺序问题,0/1背包是逆序遍历,完全背包问题是顺序遍历
  33. {  
  34. //f[v] = max{f[v], f[v-cost] + weight} 
  35.             dp[j] = (dp[j] < dp[j - coins[i].weight] + coins[i].price) ? dp[j] : dp[j - coins[i].weight] + coins[i].price;  
  36.         }  
  37.     }  
  38.   
  39.     if (dp[v] >= INF)  
  40.         printf("This is impossible.\n");  
  41.     else  
  42.         printf("The minimum amount of money in the piggy-bank is %d.\n", dp[v]);  
  43.   
  44.   
  45.     // 清理内存  
  46.     free(dp);  
  47.     dp = NULL;  
  48. }  
  49.   
  50.   
  51. int main(void)  
  52. {  
  53.     int t, e, f, n, i;  
  54.     coin *coins;  
  55.   
  56.     scanf("%d", &t);  
  57.   
  58.     while (t --) {  
  59.         scanf("%d %d", &e, &f);  
  60.         scanf("%d", &n);  
  61.   
  62.         // 接收货币  
  63.         coins = (coin *)malloc(sizeof(coin) * (n + 1));  
  64.         if (coins == NULL)  exit(-1);  
  65.   
  66.         for (i = 1; i <= n; i ++) {  
  67.             scanf("%d %d", &coins[i].price, &coins[i].weight);  
  68.         }  
  69.   
  70.         // 完全背包  
  71.         dynamicPackage(coins, n, f - e);  
  72.   
  73.   
  74.         free(coins);  
  75.         coins = NULL;     
  76.     }     
  77.   
  78.     return 0;  
  79. }  

多重背包问题


         多重背包问题要求很简单,就是每件物品给出确定的件数,求 可得到的最大价值  
         多重背包转换成 01 背包问题就是多了个初始化,把它的件数C 用二进制 分解成若干个件数的集合,这里面数字可以组合成任意小于等于C 的件数,而且不会重复,之所以叫二进制分解,是因为这样分解可 以用数字的二进制形式来解释  
       比如:7的二进制 7 = 111 它可以分解成 001 010 100 这三个数可以 组合成任意小于等于7 的数,而且每种组合都会得到不同的数  
       15 = 1111 可分解成 0001  0010  0100  1000 四个数字  

        如果13 = 1101 则分解为 0001 0010 0100 0110 前三个数字可以组合成  7以内任意一个数,即1、2、4可以组合为1——7内所有的数,加上 0110 = 6 可以组合成任意一个大于6 小于等于13的数,比如12,可以让前面贡献6且后面也贡献6就行了。虽然有重复但总是能把 13 以内所有的数都考虑到了,基于这种思想去把多件物品转换为,多种一件物品,就可用0/1 背包求解了。  

------------------------------------------------------------------------------------

以下为程序流程:
void MultiplePack(int w, int p, int m)
{
if (w * m >= p)
{
CompletePack(w, p);
return;
}
int k = 1;
while (k < m)
{
ZeroOnePack(k * w, k * p);
m -= k;
k *= 2;
}
ZeroOnePack(m * w, m * p);

}


下面附上多重背包的模板:

[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. using namespace std;  
  4. #define MAXL 10001  
  5.   
  6. int dp[MAXL], V, n, w, p, m;  
  7.   
  8. void ZeroOnePack(int w, int p);  
  9. void CompletePack(int w, int p);  
  10. void MultiplePack(int w, int p, int m);  
  11.   
  12. int main()  
  13. {  
  14.     cin >> V >> n;  //输入总的空间V,以及总的物品种类n
  15.     for (int i = 1; i <= n; i++)  //n表示物品种类的数量num
  16.     {  
  17.         cin >> w >> p >> m;  
  18.         MultiplePack(w, p, m);  
  19.     }  
  20.     cout << dp[V] << endl;  
  21.     return 0;  
  22. }  
  23.   
  24. void MultiplePack(int w, int p, int m)  
  25. {  
  26.     if (w * m >= p)  
  27.     {  
  28.         CompletePack(w, p);  
  29.         return;  
  30.     }  
  31.     int k = 1;  
  32.     while (k < m)  
  33.     {  
  34.         ZeroOnePack(k * w, k * p);  
  35.         m -= k;  
  36.         k *= 2;  
  37.     }  
  38.     ZeroOnePack(m * w, m * p);  
  39. }  
  40.   
  41. void ZeroOnePack(int w, int p)  
  42. {  
  43.     for (int j = V; j >= w; j--)  
  44.         dp[j] = max(dp[j - w] + p, dp[j]);  
  45. }  
  46.   
  47. void CompletePack(int w, int p)  
  48. {  
  49.     for (int j = w; j <= V; j++)  
  50.         dp[j] = max(dp[j - w] + p, dp[j]);  
  51. }  

--------------------------------------------------------------------------------

       看代码:  
      
[cpp]  view plain  copy
  1. int n;  //输入有多少种物品  
  2. int c;  //每种物品有多少件  
  3. int v;  //每种物品的价值  
  4. int s;  //每种物品的尺寸  
  5. int count = 0; //分解后可得到多少种物品  
  6. int value[MAX]; //用来保存分解后的物品价值  
  7. int size[MAX];  //用来保存分解后物品体积  
  8.   
  9. scanf("%d", &n);    //先输入有多少种物品,接下来对每种物品进行分解  
  10.   
  11. while (n--)     //接下来输入n中这个物品  
  12. {  
  13.     scanf("%d%d%d", &c, &s, &v);  //输入每种物品的数目和价值  
  14.     for (int k=1; k<=c; k*=2)   //<<左移 相当于乘二  
  15.     {  
  16.         value[count] = k*v;  
  17.         size[count++] = k*s;  
  18.         c -= k;  
  19.     }  
  20.     if (c > 0)  
  21.     {  
  22.         value[count] = c*v;  
  23.         size[count++] = c*s;  
  24.     }  
  25. }  


定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-2^k+1(k是满足n-2^k+1>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-2^k+1中某几个数的和的形式。

证明如下:

(1) 数列1,2,4,…,2^(k-1),n-2^k+1中所有元素的和为n,所以若干元素的和的范围为:[1, n];

(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.

(3)如果t>=2^k,设s=n-2^k+1,则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式。

(证毕!)


      

        现在用count 代替 n 就和01 背包问题完全一样了  

杭电2191题解:

此为多重背包<====>用0/1背包+完全背包:

[cpp]  view plain  copy
  1. #include<stdio.h>  
  2. #include<string.h>  
  3. int dp[102];  
  4. int p[102],h[102],c[102];  //p[]表示,h[],c[]表示每个物品最多可以使用个数
  5. int n,m;  
  6. void comback(int v,int w)//经费,重量。完全背包;  
  7. {  
  8.     for(int i=v; i<=n; i++)  
  9.         if(dp[i]<dp[i-v]+w)  
  10.             dp[i]=dp[i-v]+w;  
  11. }  
  12. void oneback(int v,int w)//经费,重量;01背包;  
  13. {  
  14.     for(int i=n; i>=v; i--)  
  15.         if(dp[i]<dp[i-v]+w)  
  16.             dp[i]=dp[i-v]+w;  
  17. }  
  18. int main()  
  19. {  
  20.     int ncase,i,j,k;  
  21.     scanf("%d",&ncase);  
  22.     while(ncase--)  
  23.     {  
  24.         memset(dp,0,sizeof(dp));  
  25.         scanf("%d%d",&n,&m);//经费,种类;  
  26.         for(i=1; i<=m; i++)  
  27.         {  
  28.             scanf("%d%d%d",&p[i],&h[i],&c[i]);//每个物品的价值,每个物品的重量,每个物品最多使用的数量;  
  29.             if(p[i]*c[i]>=n)//c[i]的数量足够多,完全可以满足经费限制,那么就转化为完全背包问题(不限制每种物品的数量)
  30.     comback(p[i],h[i]); //完全背包问题 
  31.             else  //c[i]数量有限,需要进行二进制拆分,然后转化为0/1背包问题
  32.             {  
  33.                 for(j=1; j<c[i]; j*=2)  //进行二进制拆分,c[i]表示每种物品最大可用个数
  34.                 {  
  35.                     oneback(j*p[i],j*h[i]);  
  36.                     c[i]=c[i]-j;  
  37.                 }  
  38.                 oneback(p[i]*c[i],h[i]*c[i]);  //因为上面是j<c[i],因此还需要用c[i]替换j,即j*p[i]===>c[i]*p[i]
  39.             }  
  40.         }  
  41.         printf("%d\n",dp[n]);  
  42.     }  
  43.     return 0;  
  44. }  


只是用01背包,用二进制优化:

[cpp]  view plain  copy
  1. #include <iostream>  
  2. using namespace std;  
  3. int main()  
  4. {  
  5.     int nCase,Limit,nKind,i,j,k,  v[111],w[111],c[111],dp[111];  
  6.     //v[]存价值,w[]存尺寸,c[]存件数  
  7.     //在本题中,价值是米的重量,尺寸是米的价格  
  8.     int count,Value[1111],size[1111];  
  9.     //count存储分解完后的物品总数  
  10.     //Value存储分解完后每件物品的价值  
  11.     //size存储分解完后每件物品的尺寸  
  12.     cin>>nCase;  
  13.     while(nCase--)  
  14.     {  
  15.         count=0;  
  16.         cin>>Limit>>nKind;  
  17.         for(i=0; i<nKind; i++)  
  18.         {  
  19.             cin>>w[i]>>v[i]>>c[i];  
  20.             //对该种类的c[i]件物品进行二进制分解  
  21.             for(j=1; j<=c[i]; j<<=1)  
  22.             {  
  23.                 //<<左移1位,相当于乘2  
  24.                 Value[count]=j*v[i];  
  25.                 size[count++]=j*w[i];  
  26.                 c[i]-=j;  
  27.             }  
  28.             if(c[i]>0)  
  29.             {  
  30.                 Value[count]=c[i]*v[i];  
  31.                 size[count++]=c[i]*w[i];  
  32.             }  
  33.         }  
  34.         //经过上面对每一种物品的分解,  
  35.         //现在Value[]存的就是分解后的物品价值  
  36.         //size[]存的就是分解后的物品尺寸  
  37.         //count就相当于原来的n  
  38.         //下面就直接用01背包算法来解  
  39.         memset(dp,0,sizeof(dp));  
  40.         for(i=0; i<count; i++)  
  41.             for(j=Limit; j>=size[i]; j--)  
  42.                 if(dp[j]<dp[j-size[i]]+Value[i])  
  43.                     dp[j]=dp[j-size[i]]+Value[i];  
  44.   
  45.         cout<<dp[Limit]<<endl;  
  46.     }  
  47.     return 0;  
  48. }  

未优化的:

[cpp]  view plain  copy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<cstring>  
  4. using namespace std;  
  5.   
  6. int Value[105];  
  7. int Cost[105];  
  8. int Bag[105];  
  9. int dp[105];  
  10.   
  11. int main()  
  12. {  
  13.     int C,m,n;  
  14.     scanf("%d",&C);  
  15.     while(C--)  
  16.     {  
  17.         scanf("%d%d",&n,&m);  
  18.         for(int i = 1; i <= m; i++)  
  19.             scanf("%d%d%d",&Cost[i],&Value[i],&Bag[i]);  
  20.         memset(dp,0,sizeof(dp));  
  21.         for(int i=1; i<= m; i++)  
  22.             for(int j=1; j<=Bag[i]; j++)  
  23.                 for(int k=n; k>=Cost[i]; k--)  
  24.                     dp[k]=max(dp[k], dp[k-Cost[i]]+Value[i]);  
  25.         printf("%d\n",dp[n]);  
  26.     }  
  27.     return 0;  
  28. }  
----------------------------------------------------------------------------------------------------------

未优化的多重背包问题:时间复杂度O(N^3)

容量为10的背包,有5种物品,每种物品数量分别为1,2,1,2,1,其重量分别为5,4,3,2,1,其价值分别为1,2,3,4,5。 
设计算法,实现背包内物品价值最大。 
代码如下(输出16)

#include <iostream>
#include<algorithm>

using namespace std;

int main()
{
    int total_weight = 10;
    int w[6] = { 0,5,4,3,2,1 };
    int v[6] = { 0,1,2,3,4,5 };
    int cot[6] = { 0,1,2,1,2,1 };
    int dp[11] = { 0 };

    for (int i = 1; i <= 5; i++)
        for (int k = 1; k <= cot[i];k++)
            for (int j = 10; j >= w[i]; j--)
                dp[j] = max(dp[j], dp[j - w[i]] + v[i]);

    cout << "总的价值为: " << dp[10] << endl;
    return 0;
}

后记

主要还是为了巩固01背包问题并且多做点题目,所以记录了一下学习《背包九讲》的过程,大家真想搞清楚背包问题,建议还是参考原文链接: http://love-oriented.com/pack/

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值