滑动窗口模板 && Leetcode1838. 最高频元素的频数

这篇博客介绍了如何使用滑动窗口模板解决LeetCode上的一个问题——找到数组中出现频率最高的元素的最大频率。首先对数组进行排序,然后通过滑动窗口调整左右边界,维护区间内元素变为末尾元素的操作次数,寻找满足操作数不超过k的最长区间长度。通过分析移动左右边界对操作数的影响,得出更新公式,并给出详细的解题步骤和代码实现。
摘要由CSDN通过智能技术生成

滑动窗口模板

int left,right;//视情况赋0或1
int res;//结果,根据实际情况确定初值
int total=0;//区间和
while(right<nums.size()){
    更新total
    while 窗口内数据不满足要求
        更新total
        收缩左边界
    更新res
}
return res;

题目链接:https://leetcode-cn.com/problems/frequency-of-the-most-frequent-element/
在这里插入图片描述
在这里插入图片描述

最直接的想法是先排序,然后枚举区间的右边界right,看操作数≤k时都变成nums[right]最小的左边界left,得到对应于nums[right]的区间长度,遍历一遍nums数组找最长的区间长度。

K l e f t , r i g h t K_{left,right} Kleft,right 表示都操作成nums[right]并满足操作数≤k的最长区间,则 K l e f t , r i g h t = ∑ i = l e f t r i g h t ( n u m s [ r i g h t ] − n u m s [ i ] ) = ( r i g h t − l e f t + 1 ) × n u m s [ r i g h t ] − ∑ i = l e f t r i g h t n u m s [ i ] K_{left,right}=\sum_{i=left}^{right}(nums[right]-nums[i])=(right-left+1)×nums[right]-\sum_{i=left}^{right}nums[i] Kleft,right=i=leftright(nums[right]nums[i])=(rightleft+1)×nums[right]i=leftrightnums[i]

若右边界右移一个单位,则 K l e f t , r i g h t + 1 = ( r i g h t + 1 − l e f t + 1 ) × n u m s [ r i g h t + 1 ] − ∑ i = l e f t r i g h t + 1 n u m s [ i ] = ( r i g h t − l e f t + 1 ) × n u m s [ r i g h t ] − ∑ i = l e f t r i g h t n u m s [ i ] K_{left,right+1}=(right+1-left+1)×nums[right+1]-\sum_{i=left}^{right+1}nums[i]=(right-left+1)×nums[right]-\sum_{i=left}^{right}nums[i] Kleft,right+1=(right+1left+1)×nums[right+1]i=leftright+1nums[i]=(rightleft+1)×nums[right]i=leftrightnums[i]

K l e f t , r i g h t + 1 − K l e f t , r i g h t = ( r i g h t − l e f t + 1 ) × ( n u m s [ r i g h t + 1 ] − n u m s [ r i g h t ] ) K_{left,right+1}-K_{left,right}=(right-left+1)×(nums[right+1]-nums[right]) Kleft,right+1Kleft,right=(rightleft+1)×(nums[right+1]nums[right])

其实这个增量直观的画一个图也可以看出来

在这里插入图片描述

显然右移右边界会使得操作数增加,有可能超过给定的k

再考察向右移动左边界一个单位,同样可以推得 K l e f t + 1 , r i g h t − K l e f t , r i g h t = − ( n u m s [ r i g h t ] − n u m s [ l e f t ] ) K_{left+1,right}-K_{left,right}=-(nums[right]-nums[left]) Kleft+1,rightKleft,right=(nums[right]nums[left])

在这里插入图片描述

所以右移左边界会使得操作数减少。

因此可以使用 left 与 right 作为执行操作的左右边界(闭区间),同时用total 来维护将区间内元素全部变为末尾元素的操作次数,寻找满足操作数小于等于k的最长区间长度即为最高频元素的频次,典型的滑动窗口,套模板即可。

int maxFrequency(vector<int>& nums, int k) {
        sort(nums.begin(),nums.end());//首先进行排序
        //滑窗 不超k就接着枚举右边界,超了就缩小左边界
        long long res=1;//记录最大频数 不要初始化成-1,毕竟最小的时候就是1,初始化为-1的坏处就是当只有一个元素的时候res的值不会被修改
        long long left=0;//左边界
        long long total=0;//左右边界都为0的时候
        for(long long right = 1;right < nums.size();right++){
            total= total+(right-left)*(nums[right]-nums[right-1]);//只需要定义total为longlong即可,配合强制转化一下,total= total+(long long)(right-left)*(nums[right]-nums[right-1]);
            while(total>k){
                total=total-(nums[right]-nums[left]);
                left++;
            }
            res=max(res,right-left+1);
        }
        return res;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值