滑动窗口模板
int left,right;//视情况赋0或1
int res;//结果,根据实际情况确定初值
int total=0;//区间和
while(right<nums.size()){
更新total
while 窗口内数据不满足要求
更新total
收缩左边界
更新res
}
return res;
题目链接:https://leetcode-cn.com/problems/frequency-of-the-most-frequent-element/
最直接的想法是先排序,然后枚举区间的右边界right,看操作数≤k时都变成nums[right]最小的左边界left,得到对应于nums[right]的区间长度,遍历一遍nums数组找最长的区间长度。
记 K l e f t , r i g h t K_{left,right} Kleft,right 表示都操作成nums[right]并满足操作数≤k的最长区间,则 K l e f t , r i g h t = ∑ i = l e f t r i g h t ( n u m s [ r i g h t ] − n u m s [ i ] ) = ( r i g h t − l e f t + 1 ) × n u m s [ r i g h t ] − ∑ i = l e f t r i g h t n u m s [ i ] K_{left,right}=\sum_{i=left}^{right}(nums[right]-nums[i])=(right-left+1)×nums[right]-\sum_{i=left}^{right}nums[i] Kleft,right=i=left∑right(nums[right]−nums[i])=(right−left+1)×nums[right]−i=left∑rightnums[i]
若右边界右移一个单位,则 K l e f t , r i g h t + 1 = ( r i g h t + 1 − l e f t + 1 ) × n u m s [ r i g h t + 1 ] − ∑ i = l e f t r i g h t + 1 n u m s [ i ] = ( r i g h t − l e f t + 1 ) × n u m s [ r i g h t ] − ∑ i = l e f t r i g h t n u m s [ i ] K_{left,right+1}=(right+1-left+1)×nums[right+1]-\sum_{i=left}^{right+1}nums[i]=(right-left+1)×nums[right]-\sum_{i=left}^{right}nums[i] Kleft,right+1=(right+1−left+1)×nums[right+1]−i=left∑right+1nums[i]=(right−left+1)×nums[right]−i=left∑rightnums[i]
故 K l e f t , r i g h t + 1 − K l e f t , r i g h t = ( r i g h t − l e f t + 1 ) × ( n u m s [ r i g h t + 1 ] − n u m s [ r i g h t ] ) K_{left,right+1}-K_{left,right}=(right-left+1)×(nums[right+1]-nums[right]) Kleft,right+1−Kleft,right=(right−left+1)×(nums[right+1]−nums[right])
其实这个增量直观的画一个图也可以看出来
显然右移右边界会使得操作数增加,有可能超过给定的k
再考察向右移动左边界一个单位,同样可以推得 K l e f t + 1 , r i g h t − K l e f t , r i g h t = − ( n u m s [ r i g h t ] − n u m s [ l e f t ] ) K_{left+1,right}-K_{left,right}=-(nums[right]-nums[left]) Kleft+1,right−Kleft,right=−(nums[right]−nums[left])
所以右移左边界会使得操作数减少。
因此可以使用 left 与 right 作为执行操作的左右边界(闭区间),同时用total 来维护将区间内元素全部变为末尾元素的操作次数,寻找满足操作数小于等于k的最长区间长度即为最高频元素的频次,典型的滑动窗口,套模板即可。
int maxFrequency(vector<int>& nums, int k) {
sort(nums.begin(),nums.end());//首先进行排序
//滑窗 不超k就接着枚举右边界,超了就缩小左边界
long long res=1;//记录最大频数 不要初始化成-1,毕竟最小的时候就是1,初始化为-1的坏处就是当只有一个元素的时候res的值不会被修改
long long left=0;//左边界
long long total=0;//左右边界都为0的时候
for(long long right = 1;right < nums.size();right++){
total= total+(right-left)*(nums[right]-nums[right-1]);//只需要定义total为longlong即可,配合强制转化一下,total= total+(long long)(right-left)*(nums[right]-nums[right-1]);
while(total>k){
total=total-(nums[right]-nums[left]);
left++;
}
res=max(res,right-left+1);
}
return res;
}