pytorch的安装及其在pycharm中的使用

本文详细介绍了如何在Anaconda虚拟环境中配置并安装PyTorch,包括安装所需的CUDA和cuDNN版本选择,验证PyTorch安装及GPU支持的方法,以及如何在PyCharm中使用PyTorch。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.首先配置Anaconda虚拟环境
在Anaconda Prompt中输入

conda create -n pytorch python==3.7

2.在该环境中安装pytorch
因为前面已经安装了cuda10.0.130和cudnn,安装与之匹配的pytorch版本,
官网中寻找,但是官网对应的命令貌似不太对(会有报错),最后看的是这个回答的命令。

pip install torch==1.2.0 torchvision==0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述
3.在pytorch-gpu环境中验证是否安装成功
首先在命令行中输入python进入python环境,然后输入命令验证pytorch是否安装成功:

import torch 
print(torch.__version__)

接下来再验证pytorch调用cuda是否正确。输入命令:

print(torch.cuda.is_available())

在这里插入图片描述
4.在pycharm中使用pytorch
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
同样可以验证
在这里插入图片描述
这两个环境在这里切换,因为tensorflow-gpu需要的python版本是3.6,所以没有把tensorflow和pytorch装在一个环境中。
在这里插入图片描述
如果要卸载pytorch的话,进入相应环境在命令行中输入如下命令:

pip uninstall torch

如果使用的conda命令安装的pytorch,则用如下命令:

conda uninstall pytorch
conda uninstall libtorch
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值