PAT_1003 Emergency (25 分) (dij)

本文介绍了一种优化的Dijkstra算法,除了找到从源点到目标点的最短路径外,还同时计算了路径中包含的最大人员数量。在邻接矩阵表示的图中,通过多维护存最短路径数量和点权价值,实现了这一目标。程序中注意了循环变量命名避免手误,并分享了快速实现该算法的经验。
摘要由CSDN通过智能技术生成

题目链接
在这里插入图片描述
在这里插入图片描述

比裸的dij多了两个尺度,需要输出最短路径的条数以及点权最大的最短路径,多开辟两个数组记录即可,在更新dis[]数组的时候相应的进行更新就好。

for循环循环变量i容易写顺手,图论中循环变量命名为v w之类的时候要注意循环体不要手误写i!除了因为这debug了一会,整体在这个程序写的还是蛮快的,鼓励一下自己嘿嘿

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
#define maxNode 505
#define INF 0x3f3f3f3f
int G[maxNode][maxNode];//邻接矩阵存储图,值代表边权,不连通则为INF
int people[maxNode];//people[i]表示ith城市中人员数目
bool vis[maxNode]={false};//储存已找到最短距离的顶点集合
int value[maxNode]={false};//点权价值,在这里是最短路径中包含的人员数量,越多越好
int dis[maxNode];//源点到其他顶点的距离
int num[maxNode]={0};//num[i]表示到ith城市的最短路径的数目
int dij(int src,int N);
int main() {
#ifdef ONLINE_JUDGE
#else
    freopen("1.txt","r",stdin);
#endif
    int N,M,src,dst;
    cin >> N >> M >> src >> dst;
    //初始化图
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            if(i==j) G[i][j]=0;
            else G[i][j]=INF;
        }
    }
    memset(dis,0x3f3f3f3f,sizeof(dis));//初始化距离数组
    for(int i=0;i<N;i++)
        cin >> people[i];
    for(int i=0;i<M;i++){//构建好图
        int v,w,len;
        cin >> v >> w >> len;
        G[v][w]=len;
        G[w][v]=len;
    }
    /*for(int i=0;i<N;i++){
        for(int j=0;j<N;j++)
        {
            cout << G[i][j] << " ";
        }
        cout << endl;
    }*/
    dij(src,N);
    cout << num[dst] << " " << value[dst];
    return 0;
}
int dij(int src,int N){
    dis[src]=0;//最初只有src到src距离为0
    num[src]=1;//src到src最短路径数目为1
    value[src]=people[src];
    for(int i=0;i<N;i++){//一共要收录N次
        //从未收录的顶点中选择dis最小的收录
        int m=-1,tmpMin=INF;
        for(int i=0;i<N;i++){
            if(!vis[i] && dis[i]<tmpMin){
                tmpMin=dis[i];
                m=i;
            }
        }
        if(m==-1) return -1;//表示图不连通
        //下面是找到了当前最近的顶点了
        vis[m]=true;//将其收录
        //对m的每一个邻接点,更新src到这些邻接点的距离
        for(int w=0;w<N;w++){
            //cout << G[m][w] << " " << dis[m]+G[m][w] << " " << dis[w] << endl;
            if(!vis[w] && G[m][w]!=INF && dis[m]+G[m][w]<dis[w]){
                dis[w]=dis[m]+G[m][w];
                num[w]=num[m];//更新到w的最短路径数目
                value[w]=value[m]+people[w];
            }else if(!vis[w] && G[m][w]!=INF && dis[m]+G[m][w]==dis[w]){
                num[w]+=num[m];
                if(value[m]+people[w] > value[w]){
                    value[w]=value[m]+people[w];
                }
            }
        }
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值