摘要:AI使用杂谈,抛砖引玉,探讨了AI的问题与AI的高效使用。
目录
导言
抛砖引玉。AI时代,个人认为“3步之内必有解药”,AI带来的问题让AI来解决。
大家都在怎么使用AI,怎么样使用AI更高效?AI可信么?会不会有什么问题?
结合AI的回答与网上的DeepSeek解读资料,我们一一探究。
AI带来的问题与解决概论
AI,总结有两大问题
AI本身的问题
AI本身是存在缺陷的,即AI幻觉、可解释性、实时更新、个人隐私、恶意输出等
- 结果模糊
常常会有“信息过载、可用信息少、答案不够精确”的情况。这确实部分源于用户描述不够具体,但也与 AI 的设计目标(提供广泛信息而非精准答案)有关。
需要学习提示词,学习更高效的使用方法。
- 结果被导向预期结果
当提示语中包含明显立场或者预设或倾向,获得的信息总是支持特定观点。
出现可能情况时,明确要求AI提供不同观点或者论据,对AI的输出保持警惕,审视自己的输入和AI的输出。
- 结果错误但AI自信
AI可能提供错误的数据与预测
鼓励AI在不明确时说明,要求AI提供信息来源,要求AI从多个角度验证来源。
AI带来的问题
- 职业危机
“会被AI代替么?”“AI是来帮我还是取代我的”。
不同位置、不同情况的个人对这两个问题的答案都是不一样的,但不可否认的是,AI带来了严重的“职业危机”焦虑。
一个比之前任何时间都需要深度学习的时代、一个比之前任何时间都适合深度学习的时代。
努力提升自己,积极拥抱AI,把能做的都做了,保持好心态应对挑战,加油,共勉。
- 依赖过度
AI多数时候是对的(今后的准确率会越来越高),且现在资料来源越来越权威、清晰。
当人们越来越习惯使用AI的时候,很容易出现依赖过度的问题,内容仅仅由AI生成,长期不自己深度思考会有副作用。
要注意保持自己的深度思考与学习总结。
- 信息泄露
要注意不输入个人与公司的机密数据。
正确使用
要正确使用需要明确目标、优化输入、结合工具、迭代验证。
了解上述步骤的基本原则,进阶的AI使用就需要了解Prompt的提示词设计与使用了。
高效输入原则
明确问题+控制输出
1. 优化输入:简洁 + 具体
- 问题: 你可能输入过于笼统(如 “Java 怎么用”),导致 AI 返回大量泛化信息。
- 方法:
- 关键词提炼: 提取核心问题,减少修饰词。
- 示例:从 “我想知道 Java 怎么处理并发问题” 简化为 “Java 并发处理方法”。
- 加上下文: 用 1-2 句话提供背景。
- 示例: “我在写 Java Web 应用,需要处理并发,推荐什么方法?”
- 关键词提炼: 提取核心问题,减少修饰词。
- 效果: AI 聚焦于并发相关内容,避免泛谈 Java 基础。
2. 分步提问:逐步聚焦
- 问题: 一次性提问复杂问题,AI 可能试图覆盖所有可能性,信息过多。
- 方法:
- 将问题拆成小块,逐步深入。
- 示例:
- 将问题拆成小块,逐步深入。
- 效果: 每次回答更精准,逐步逼近需求,避免冗长。
3. 指定回答形式:控制输出
- 问题: AI 默认返回长篇文字,技术问题可能需要代码或简答。
- 方法:
- 明确要求格式,如 “简短回答”、“代码示例”、“步骤列表”。
- 示例:
- “Java 如何实现单例?给代码示例。”
- “简述 Spring Boot 启动流程,50 字内。”
- 示例:
- 明确要求格式,如 “简短回答”、“代码示例”、“步骤列表”。
- 效果: 输出更符合预期,减少筛选时间。
4. 使用否定条件:排除无关信息
- 问题: AI 可能包含你不需要的内容。
- 方法:
- 加上否定限定,如 “不要讲基础”、“不涉及历史”。
- 示例: “Java 8 Stream 用法,代码示例,不要讲 Lambda 历史。”
- 加上否定限定,如 “不要讲基础”、“不涉及历史”。
- 效果: 直接跳过冗余背景,直奔主题。
5. 迭代提问:快速纠偏
- 问题: 首次回答不精确,因描述不清难以重写长篇。
- 方法:
- 根据回答调整,短句补充。
- 示例:
- 问:“Java 怎么优化性能?”
- 答:讲了一堆无关的 GC。
- 追问:“只讲代码层面的优化,简短点。”
- 示例:
- 根据回答调整,短句补充。
- 效果: 通过 2-3 次交互锁定答案,比重写长描述更快。
6. 借助示例或模板:减少描述负担
- 问题: 不擅长长篇描述,难以表达完整需求。
- 方法:
- 提供问题示例或模板,让 AI 推导。
- 示例:
- “像这样优化 Java 代码:`for(int i=0;i<100;i++){sum+=i;}”,怎么更快?”
- 示例:
- 提供问题示例或模板,让 AI 推导。
- 效果: AI 根据示例直接回答,省去复杂描述。
7. 利用 AI 的上下文记忆:简化后续提问
- 问题: 反复描述背景浪费时间。
- 方法:
- 在同一会话中延续话题,AI 会记住上下文。
- 示例:
- 问:“Java GC 怎么工作?”
- 追问:“G1 具体呢?”
- 示例:
- 在同一会话中延续话题,AI 会记住上下文。
- 效果: 后续提问更简洁,答案更精准。
结合工具
多了解AI,形成属于自己的AI工具箱以服务自己的生产目标。
验证评估
可以让AI回答资料来源+官方说明文档,AI文档与权威资料交叉检查来确保准确性。
推荐的使用场景
说出自己的需求,然后让AI推荐使用,让AI说明工作流程。
“AI推荐AI”
场景
Q:我现在想做自媒体,做一些视频和写一些文章,有哪些AI可以使用?要求推荐最好用的,并且给出工作流程
A:

最后的话
略。勇敢去做、去相信自己、去投入
资料提取通过网盘分享的文件:DeepSeek解读.zip
链接: https://pan.baidu.com/s/1kaRfgthv5wcrrhBV5cJ3Cg?pwd=6gun 提取码: 6gun