[水]AI使用技巧抛砖引玉

摘要:AI使用杂谈,抛砖引玉,探讨了AI的问题与AI的高效使用。

目录

导言

AI带来的问题与解决概论

AI本身的问题

AI带来的问题

正确使用

高效输入原则

1. 优化输入:简洁 + 具体

2. 分步提问:逐步聚焦

3. 指定回答形式:控制输出

4. 使用否定条件:排除无关信息

5. 迭代提问:快速纠偏

6. 借助示例或模板:减少描述负担

7. 利用 AI 的上下文记忆:简化后续提问

结合工具

验证评估

推荐的使用场景

场景

最后的话




导言

抛砖引玉。AI时代,个人认为“3步之内必有解药”,AI带来的问题让AI来解决。
大家都在怎么使用AI,怎么样使用AI更高效?AI可信么?会不会有什么问题?
结合AI的回答与网上的DeepSeek解读资料,我们一一探究。

AI带来的问题与解决概论

AI,总结有两大问题

AI本身的问题

AI本身是存在缺陷的,即AI幻觉、可解释性、实时更新、个人隐私、恶意输出等
  • 结果模糊
常常会有“信息过载、可用信息少、答案不够精确”的情况。这确实部分源于用户描述不够具体,但也与 AI 的设计目标(提供广泛信息而非精准答案)有关。
需要学习提示词,学习更高效的使用方法。
  • 结果被导向预期结果
当提示语中包含明显立场或者预设或倾向,获得的信息总是支持特定观点。
出现可能情况时,明确要求AI提供不同观点或者论据,对AI的输出保持警惕,审视自己的输入和AI的输出。
  • 结果错误但AI自信
AI可能提供错误的数据与预测
鼓励AI在不明确时说明,要求AI提供信息来源,要求AI从多个角度验证来源。

AI带来的问题

  • 职业危机
“会被AI代替么?”“AI是来帮我还是取代我的”。
不同位置、不同情况的个人对这两个问题的答案都是不一样的,但不可否认的是,AI带来了严重的“职业危机”焦虑。
一个比之前任何时间都需要深度学习的时代、一个比之前任何时间都适合深度学习的时代。
努力提升自己,积极拥抱AI,把能做的都做了,保持好心态应对挑战,加油,共勉。
  • 依赖过度
AI多数时候是对的(今后的准确率会越来越高),且现在资料来源越来越权威、清晰。
当人们越来越习惯使用AI的时候,很容易出现依赖过度的问题,内容仅仅由AI生成,长期不自己深度思考会有副作用。
要注意保持自己的深度思考与学习总结。
  • 信息泄露
要注意不输入个人与公司的机密数据。

正确使用

要正确使用需要明确目标、优化输入、结合工具、迭代验证。
了解上述步骤的基本原则,进阶的AI使用就需要了解Prompt的提示词设计与使用了。

高效输入原则

明确问题+控制输出

1. 优化输入:简洁 + 具体

  • 问题: 你可能输入过于笼统(如 “Java 怎么用”),导致 AI 返回大量泛化信息。
  • 方法:
    • 关键词提炼: 提取核心问题,减少修饰词。
      • 示例:从 “我想知道 Java 怎么处理并发问题” 简化为 “Java 并发处理方法”。
    • 加上下文: 用 1-2 句话提供背景。
      • 示例: “我在写 Java Web 应用,需要处理并发,推荐什么方法?”
  • 效果: AI 聚焦于并发相关内容,避免泛谈 Java 基础。

2. 分步提问:逐步聚焦

  • 问题: 一次性提问复杂问题,AI 可能试图覆盖所有可能性,信息过多。
  • 方法:
    • 将问题拆成小块,逐步深入。
      • 示例:
  • 效果: 每次回答更精准,逐步逼近需求,避免冗长。

3. 指定回答形式:控制输出

  • 问题: AI 默认返回长篇文字,技术问题可能需要代码或简答。
  • 方法:
    • 明确要求格式,如 “简短回答”、“代码示例”、“步骤列表”。
      • 示例:
        • “Java 如何实现单例?给代码示例。”
        • “简述 Spring Boot 启动流程,50 字内。”
  • 效果: 输出更符合预期,减少筛选时间。

4. 使用否定条件:排除无关信息

  • 问题: AI 可能包含你不需要的内容。
  • 方法:
    • 加上否定限定,如 “不要讲基础”、“不涉及历史”。
      • 示例: “Java 8 Stream 用法,代码示例,不要讲 Lambda 历史。”
  • 效果: 直接跳过冗余背景,直奔主题。

5. 迭代提问:快速纠偏

  • 问题: 首次回答不精确,因描述不清难以重写长篇。
  • 方法:
    • 根据回答调整,短句补充。
      • 示例:
        • 问:“Java 怎么优化性能?”
        • 答:讲了一堆无关的 GC。
        • 追问:“只讲代码层面的优化,简短点。”
  • 效果: 通过 2-3 次交互锁定答案,比重写长描述更快。

6. 借助示例或模板:减少描述负担

  • 问题: 不擅长长篇描述,难以表达完整需求。
  • 方法:
    • 提供问题示例或模板,让 AI 推导。
      • 示例:
        • “像这样优化 Java 代码:`for(int i=0;i<100;i++){sum+=i;}”,怎么更快?”
  • 效果: AI 根据示例直接回答,省去复杂描述。

7. 利用 AI 的上下文记忆:简化后续提问

  • 问题: 反复描述背景浪费时间。
  • 方法:
    • 在同一会话中延续话题,AI 会记住上下文。
      • 示例:
        • 问:“Java GC 怎么工作?”
        • 追问:“G1 具体呢?”
  • 效果: 后续提问更简洁,答案更精准。

结合工具

多了解AI,形成属于自己的AI工具箱以服务自己的生产目标。

验证评估

可以让AI回答资料来源+官方说明文档,AI文档与权威资料交叉检查来确保准确性。

推荐的使用场景

说出自己的需求,然后让AI推荐使用,让AI说明工作流程。
“AI推荐AI”

场景

Q:我现在想做自媒体,做一些视频和写一些文章,有哪些AI可以使用?要求推荐最好用的,并且给出工作流程
A:

最后的话

略。勇敢去做、去相信自己、去投入
资料提取
通过网盘分享的文件:DeepSeek解读.zip
链接: https://pan.baidu.com/s/1kaRfgthv5wcrrhBV5cJ3Cg?pwd=6gun 提取码: 6gun
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值