// 静态单链表
int head, e[N], ne[N], idx;
void init() {
head = -1;
idx = 0;
}
// 头插
void insert(int x) {
e[idx] = x, ne[idx] = head, head = idx++;
}
void remove() {
head = ne[head];
}
// 栈
int stk[N], top = -1;
stk[++top] = x; // 入栈
--top; //出栈
top == -1 // 栈是否为空
stk[top] //访问栈顶元素
// 普通队列
int q[N], front = 0, rear = 0;
q[rear++] = x; // 入队
++front; // 出队
front == rear // 队列是否为空
q[front] //访问队列最前面元素
// 循环队列
int q[N], front = 0, rear = 0;
q[rear++] = x; if(rear == N) rear = 0; // 入队
++front; if(front == N) front = 0; // 出队
front == rear // 队列是否为空
q[front] //访问队列最前面元素
// 单调栈 经常用来找左边/右边第一个大于/小于它的数字/下标
// 这里建议用来存下标,更通用
int stk[N], top = -1;
for (int i = 0; i < n; ++i) {
while(top != -1 && check(a[stk[top]], a[i])) --top;
stk[++top] = i;
//.....
}
// 单调队列 如滑动窗口,用来找窗口内最大/最小值
int q[N], front = 0, rear = 0;
for(int i = 0; i < n; ++i) {
while(front != rear && q[rear - 1] > num[i]) --rear;
q[rear++] = num[i];
if (i >= k - 1) {
printf("%d ", q[front]);
if (q[front] == num[i - k + 1]) ++front;
}
}
// KMP
// Trie
int son[N][26], cnt[N], idx;
void insert(string& s) {
int p = 0;
for(auto c: s) {
int u = c - 'a';
if (son[p][u]) son[p][u] = ++idx;
p = son[p][u];
}
cnt[p]++;
}
int query(string& s) {
int p = 0;
for(auto c: s) {
int u = c - 'a';
if (!son[p][u]) return 0;
p = son[p][u];
}
return cnt[p];
}
// 朴素并查集
int p[N];
void init() {
for(int i = 0; i < N; ++i) p[i] = i;
}
int find(int x) {
if (p[x] == x) return x;
p[x] = find(p[x]);
return p[x];
}
void connect(int a, int b) {
p[find(a)] = find(b);
}
// 维护size的并查集
int p[N], size[N];
void init() {
for(int i = 0; i < N; ++i)
p[i] = i, size[i] = 1;
}
int find(int x) {
if (p[x] == x) return x;
else return p[x] = find(p[x]);
}
void connect(int a, int b) {
p[find(a)] = find(b);
size[find(b)] += size[find(a)];
}
// 维护到根节点距离
int p[N], dist[N];
void init() {
for(int i = 0; i < N; ++i)
p[i] = i, dist[i] = 0;
}
int find(int x) {
if (x == p[x]) return x;
int pp = p[x];
p[x] = find(pp);
dist[x] += dist[pp];
}
void connect(int a, int b, int d) {
p[find(a)] = find(b);
dist[find(a)] = d;
}
// 小根堆 这里除了维护值,还维护了其他信息,根据需要取舍
// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;
void heap_swap(int a, int b) {
swap(h[a], h[b]);
swap(hp[a], hp[b]);
swap(ph[hp[a]], ph[hp[b]]);
}
void down(int u) {
int t = u, son = 2 * u;
while(son < n) {
if (son + 1 < n && h[son + 1] < h[son]) ++son;
if (h[son] > h[t]) break;
head_swap(t, son);
t = son, son = 2 * son;
}
}
void up(int u) {
while(u && h[u] < h[u / 2]) {
heap_swap(u, u / 2);
u /= 2;
}
}
void build_heap() {
for(int i = n / 2; i ; i--)
down(i);
}
// 哈希 拉链 一般不会用到
int h[N], e[N], ne[N], idx;
void init() {
memset(h, -1, sizeof(h));
idx = 0;
}
void insert(int x) {
int k = hash(x);
e[idx] = x, ne[idx] = h[k], h[k] = idx++;
}
bool find(int x) {
int k = hash(x);
int p = h[k];
while(p != -1 && e[p] != x)
p = ne[p];
return p != -1;
}
// 字符串哈希
using ULL = unsigned long long;
ULL h[N], p[N];
p[0] = 1;
for(int i = 1; i <= n; ++i) {
h[i] = h[i - 1] * P + str[i];
P[i] = P[i - 1] * P;
}
ULL get(int l, int r) {
return h[r] - h[l - 1] * p[r - l + 1];
}
算法题代码模板2
算法与数据结构详解:从单链表到复杂数据结构与应用
最新推荐文章于 2024-12-07 22:31:36 发布
本文详细介绍了静态单链表、栈、队列、单调栈、单调队列、KMP算法、Trie树、朴素并查集、小根堆等数据结构和算法,展示了它们在编程中的应用场景,包括查找、排序、搜索和数据管理。
1850

被折叠的 条评论
为什么被折叠?



