算法题代码模板1

// 快速排序模板
void quick_sort(int a[], int l, int r) {
    if (l >= r) return;
    int i = l - 1, j = r + 1, x = a[(l + r) / 2];
    while(i < j) {
        do ++i; while(a[i] < x);
        do --j; while(a[j] > x);
        if (i < j) swap(a[i], a[j]);
    }
    quick_sort(a, l, j);
    quick_sort(a, j + 1, r);
}

// 归并排序模板
int t[];
void merge_sort(int q[], int l, int r) {
    if (l >= r) return;
    int mid = (l + r) / 2;

    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    int i = l, j = mid + 1, k = l;
    while(i <= mid && j <= r) {
        if (q[i] <= q[j]) t[k++] = q[i++];
        else t[k++] = q[j++];
    }
    while(i <= mid) t[k++] = q[i++];
    while(j <= r) t[k++] = q[j++];

    for(i = l; i <= r; ++i) q[i] = t[i];
}

// 二分搜索模板
int binary_search(int a[], int l, int r) {
    int i = l - 1, j = r + 1;
    while(i + 1 != j) {
        int mid = (i + j) / 2;
        if (check(a[mid])) l = mid;
        else r = mid;
    }
    return l;
}

// 对于下面的高精度模板,所有数组都是 下标0存低位 最后存高位

// 高精度加法 
vector<int> add(vector<int>& a, vector<int>& b) {
    if (a.size() < b.size()) return add(b, a);

    vector<int> ans;
    int t = 0;
    for(int i = 0; i < a.size(); ++i) {
        t += a[i];
        if (i < b.size()) t += b[i];
        ans.push_back(t % 10);
        t /= 10;
    }
    if (t) ans.push_back(t);
    return ans;
}

// 高精度减法 保证 a > b, a[0] b[0] 存低位
vector<int> sub(vector<int>& a, vector<int>& b) {
    vector<int> ans;
    int t = 0;
    for(int i = 0; i < a.size(); ++i) {
        t += a[i];
        if (i < v.size()) t -= b[i];
        ans.push_back((t + 10) % 10);
        if (t < 0) t = -1;
        else t = 0;
    }
    
    while(ans.size() > 1 && ans[ans.size() - 1] == 0) ans.pop_back();
    return ans;
}

// 高精度乘以低精度 a[0] 存低位
vector<int> mul(vector<int> &a, int b) {
    vector<int> ans;
    
    int t = 0;
    for(int i = 0; i < a.size(); ++i) {
        t = t + (a[i] * b);
        ans.push_back(t % 10);
        t /= 10;
    }

    while(t) {
        ans.push_back(t % 10);
        t /= 10;
    }
    return ans;
}

// 高精度除以低精度 a[0] 存低位
vector<int> div(vector<int>& a, int b) {
    vector<int> ans;

    int r = 0;
    for(int i = a.size() - 1; i >= 0; --i) {
        r = r * 10 + a[i];
        ans.push_back(r / b);
        r %= b;
    }

    reverse(ans.begin(). ans.end());
    while(ans.size() > 1 && ans[ans.size() - 1] == 0) ans.pop_back();
    return ans;
}


// 双指针 不固定,简单如下
for(int i = 0, j = 0; j < n; ++j) {
    while(i < j && check(i, j)) ++j;
    // .....
}


// 一维前缀和
sum[i] = sum[i - 1] + a[i] // a 从下标1开始
sum[i+1] = sum[i] + a[i] // a从下标0开始, 其前缀和为sum[1]

// 一维差分 给[l, r]区间内加上c
B[l] += c, B[r + 1] -= c;

// 二维前缀和
S[i][j] = S[i-1][j] + S[i][j-1] - S[i-1][j-1] + a[i][j] // a从[1,1]开始

// 二维差分 给[(x1, y1), (x2, y2)]区间内加上c
S[x1][y1] += c, S[x2+1][y1] -=c, S[x1][y2+1] -= c, S[x2+1][y2+1] += c;

// 求x中1的个数
int count(int x) {
    int ans = 0;
    while(x) {
        x -= (x & -x);
        ++ans;
    }
}

// 区间合并计数
int merge(vector<pair<int, int> &segs){
    int n = segs.size();
    if (n <= 1) return n;

    sort(segs.begin(), segs.end());

    auto seg = segs[0];
    int ans = 1;
    for(int i = 1; i < n; ++i) {
        if (segs[i].first <= seg.second)
            seg.second = max(seg.second, segs[i].second);
        else {
            ++ans;
            seg = segs[i];
        }
    }
    return ans;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值