// 快速排序模板
void quick_sort(int a[], int l, int r) {
if (l >= r) return;
int i = l - 1, j = r + 1, x = a[(l + r) / 2];
while(i < j) {
do ++i; while(a[i] < x);
do --j; while(a[j] > x);
if (i < j) swap(a[i], a[j]);
}
quick_sort(a, l, j);
quick_sort(a, j + 1, r);
}
// 归并排序模板
int t[];
void merge_sort(int q[], int l, int r) {
if (l >= r) return;
int mid = (l + r) / 2;
merge_sort(q, l, mid);
merge_sort(q, mid + 1, r);
int i = l, j = mid + 1, k = l;
while(i <= mid && j <= r) {
if (q[i] <= q[j]) t[k++] = q[i++];
else t[k++] = q[j++];
}
while(i <= mid) t[k++] = q[i++];
while(j <= r) t[k++] = q[j++];
for(i = l; i <= r; ++i) q[i] = t[i];
}
// 二分搜索模板
int binary_search(int a[], int l, int r) {
int i = l - 1, j = r + 1;
while(i + 1 != j) {
int mid = (i + j) / 2;
if (check(a[mid])) l = mid;
else r = mid;
}
return l;
}
// 对于下面的高精度模板,所有数组都是 下标0存低位 最后存高位
// 高精度加法
vector<int> add(vector<int>& a, vector<int>& b) {
if (a.size() < b.size()) return add(b, a);
vector<int> ans;
int t = 0;
for(int i = 0; i < a.size(); ++i) {
t += a[i];
if (i < b.size()) t += b[i];
ans.push_back(t % 10);
t /= 10;
}
if (t) ans.push_back(t);
return ans;
}
// 高精度减法 保证 a > b, a[0] b[0] 存低位
vector<int> sub(vector<int>& a, vector<int>& b) {
vector<int> ans;
int t = 0;
for(int i = 0; i < a.size(); ++i) {
t += a[i];
if (i < v.size()) t -= b[i];
ans.push_back((t + 10) % 10);
if (t < 0) t = -1;
else t = 0;
}
while(ans.size() > 1 && ans[ans.size() - 1] == 0) ans.pop_back();
return ans;
}
// 高精度乘以低精度 a[0] 存低位
vector<int> mul(vector<int> &a, int b) {
vector<int> ans;
int t = 0;
for(int i = 0; i < a.size(); ++i) {
t = t + (a[i] * b);
ans.push_back(t % 10);
t /= 10;
}
while(t) {
ans.push_back(t % 10);
t /= 10;
}
return ans;
}
// 高精度除以低精度 a[0] 存低位
vector<int> div(vector<int>& a, int b) {
vector<int> ans;
int r = 0;
for(int i = a.size() - 1; i >= 0; --i) {
r = r * 10 + a[i];
ans.push_back(r / b);
r %= b;
}
reverse(ans.begin(). ans.end());
while(ans.size() > 1 && ans[ans.size() - 1] == 0) ans.pop_back();
return ans;
}
// 双指针 不固定,简单如下
for(int i = 0, j = 0; j < n; ++j) {
while(i < j && check(i, j)) ++j;
// .....
}
// 一维前缀和
sum[i] = sum[i - 1] + a[i] // a 从下标1开始
sum[i+1] = sum[i] + a[i] // a从下标0开始, 其前缀和为sum[1]
// 一维差分 给[l, r]区间内加上c
B[l] += c, B[r + 1] -= c;
// 二维前缀和
S[i][j] = S[i-1][j] + S[i][j-1] - S[i-1][j-1] + a[i][j] // a从[1,1]开始
// 二维差分 给[(x1, y1), (x2, y2)]区间内加上c
S[x1][y1] += c, S[x2+1][y1] -=c, S[x1][y2+1] -= c, S[x2+1][y2+1] += c;
// 求x中1的个数
int count(int x) {
int ans = 0;
while(x) {
x -= (x & -x);
++ans;
}
}
// 区间合并计数
int merge(vector<pair<int, int> &segs){
int n = segs.size();
if (n <= 1) return n;
sort(segs.begin(), segs.end());
auto seg = segs[0];
int ans = 1;
for(int i = 1; i < n; ++i) {
if (segs[i].first <= seg.second)
seg.second = max(seg.second, segs[i].second);
else {
++ans;
seg = segs[i];
}
}
return ans;
}
算法题代码模板1
最新推荐文章于 2024-04-19 16:30:00 发布