http://acm.hdu.edu.cn/showproblem.php?pid=3849
#include<iostream>
using namespace std;
#include<algorithm>
#include<string>
#include<cstdio>
#include<cstring>
#include<map>
#define N 10005
#define M_M 200005
#pragma comment(linker, "/STACK:102400000,102400000")
int top,bcnt;
int stack[N],indx;
int dfn[N],low[N],cn;
map<string,int> M; //存地点对应的编号
map<int,string> MM; //存编号对应的地点
map<string,int> final; //存每条边的编号,很有用的!
struct node{
int next,v;
node(){};
node(int a,int b){
next=a,v=b;
}
}E[M_M];
struct ans{
string s;
int ind;
}ret[M_M]; //存最后结果,ind拿来排序的时候用
int head[N],NE;
int n,m;
void init(){
M.clear();
MM.clear();
final.clear();
NE=0;bcnt=0;top=0;indx=0;cn=0;
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
}
void insert(int u,int v){
E[NE]=node(head[u],v);
head[u]=NE++;
}
void tarjan(int u,int pre){ //----------------------------------1
dfn[u]=low[u]=++indx;
stack[top++]=u;
for(int i=head[u];i!=-1;i=E[i].next){
int v=E[i].v;
if(v==pre) continue;
if(!dfn[v]){
tarjan(v,u);
if(low[v]<low[u])
low[u]=low[v];
if(low[v]>dfn[u]){ //满足割边要求
ret[cn].s=MM[u]+' '+MM[v];
if(!final[ret[cn].s]) //-----------------------2
ret[cn].s=MM[v]+' '+MM[u];
ret[cn].ind=final[ret[cn].s];
cn++;
}
}
else if(dfn[v]<low[u])
low[u]=dfn[v];
}
}
bool cmp(ans x,ans y){
return x.ind<y.ind;
}
int bin[N];
int find(int x){
if(bin[x]==x)
return bin[x];
return bin[x]=find(bin[x]);
}
bool merge(int x,int y){
int fx=find(x);
int fy=find(y);
if(fx!=fy){
bin[fx]=fy;
return true;
}
return false;
}
int main(void){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
init();
int ind=1;
for(int i=0;i<=n;i++)
bin[i]=i;
for(int i=1;i<=m;i++){
string u,v;
cin>>u>>v;
if(!M[u]){
M[u]=ind++;
MM[ind-1]=u;
}
if(!M[v]){
M[v]=ind++;
MM[ind-1]=v;
}
final[u+' '+v]=i;
int k1=M[u],k2=M[v];
insert(k1,k2);
insert(k2,k1);
if(merge(k1,k2))
bcnt++;
}
if(bcnt!=n-1){
printf("0\n");
continue;
}
tarjan(1,-1);
sort(ret,ret+cn,cmp);
printf("%d\n",cn);
for(int i=0;i<cn;i++)
cout<<ret[i].s<<endl;
}
}
1.判断割边,对于(u,v)这样一条边,如果low[v]>dfn[u]的话,那么这条边就是一条关键边,,low[v]>dfn[u]说明v这个节点,已经没有其他的边指向u或者u的祖先,那么这条边拿掉,v的集合与u的集合就是分隔的两个分量。此外如果low[v]>=dfn[u]的话,u这个点就是割点,想法跟割边是一样的,拿掉u这个点,连通图肯定是分成两个了
2.代码中标注的1,就是tarjan(int u,int pre)中的pre这个值,这个值是很有必要的,因为双连通图是双向的,从u访问v,从v拓展出去的时候一定会访问回u,注意这个时候,如果没有if(v==pre) continue这句,那么程序会跳转到if(low[u]>dfn[v]) 这句,这个时候势必会改变low[u]的值,你会发现,这样以后,你永远也不可能找到一点low[v]>dfn[u],就是找不到割边
3.代码中标注的2,判断是否有u+' '+v这个字符串的语句,还是那个原因,因为边是双向的,你不能确保dfs的时候的顺序,u,v实际访问可能是v,u,这个时候存储的时候得反一下