双连通小结

本文介绍了无向图的点双连通和边双连通概念,并探讨了割点性质。给出了处理双连通分量的模板,包括强连通分量和边双连通分量的算法。此外,列举了多个相关问题的UVA、POJ和HDU题目,总结了四种常见的图论问题类型,涉及强连通分量、边双连通分量、无向图转化为有向图和奇偶圈判定等。
摘要由CSDN通过智能技术生成

概念:

点双连通:如果任意两点之间至少存在两条”点不重复”的路径,则说这个图是点双连通的,这个要求等价于任意两条边都在同一个简单环中,即内部无割点

边双连通:如果任意两点至少存在两条“边不重复“的路径,我们说这个图是边-双连通的,这个要求低一点,只需要每条边都至少在一个简单环中,即所有的边都不是桥

对于一张无向图,每条边恰好属于一个双连通分量,但不同的双连通分量之间可能会有公共点,但是不同的双连通分量之间的公共点最多只有一个,且这个点一定是割顶,另一方面,任意割顶都是至少两个不同双连通分量的公共点

割点的性质:割点的子孙结点所能返回的最小时间戳大于等于割点本身的时间戳
或者割点本身是根结点,但是他的子结点个数大于1

模版:
强连通分量(SCC)模版
无向图的连通分量(BCC)模版

UVA和UVALive上的题目

UVA - 11324 The Largest Clique DAG+强连通分量

UVA - 11396 Claw Decomposition 二分图染色

UVA - 10765 Doves and bombs 割点

UVA - 10972 RevolC FaeLoN 边双连通分量

UVALive - 4287 Proving Equivalences DAG+强连通分量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值