概念:
点双连通:如果任意两点之间至少存在两条”点不重复”的路径,则说这个图是点双连通的,这个要求等价于任意两条边都在同一个简单环中,即内部无割点
边双连通:如果任意两点至少存在两条“边不重复“的路径,我们说这个图是边-双连通的,这个要求低一点,只需要每条边都至少在一个简单环中,即所有的边都不是桥
对于一张无向图,每条边恰好属于一个双连通分量,但不同的双连通分量之间可能会有公共点,但是不同的双连通分量之间的公共点最多只有一个,且这个点一定是割顶,另一方面,任意割顶都是至少两个不同双连通分量的公共点
割点的性质:割点的子孙结点所能返回的最小时间戳大于等于割点本身的时间戳
或者割点本身是根结点,但是他的子结点个数大于1
模版:
强连通分量(SCC)模版
无向图的连通分量(BCC)模版
UVA和UVALive上的题目
UVA - 11324 The Largest Clique DAG+强连通分量
UVA - 11396 Claw Decomposition 二分图染色
UVA - 10765 Doves and bombs 割点
UVA - 10972 RevolC FaeLoN 边双连通分量
UVALive - 4287 Proving Equivalences DAG+强连通分量