程序如下:
/* 递归 汉诺塔问题*/
void move(char x, char y)
{
printf("%c->%c\n", x, y);
}
void hanoi(int n, char one, char two, char three)
{
if (n == 1)
move(one, three);
else {
hanoi(n - 1, one, three, two);//将one上n-1个盘子通过three放到two上
move(one, three);
hanoi(n - 1, two, one, three);//将two上n-1个盘子通过one放到three上
}
}
int main()
{
hanoi(3, 'A', 'B', 'C');
return 0;
}
程序执行结果:
A->C
A->B
C->B
A->C
B->A
B->C
A->C
讲解实现过程:
特别说明:
汉诺塔问题的思想:为了将A上n个盘子放到C上,如果能够实现A上的n-1个盘子放到B上,则A上最大的盘子就能放到C上,然后将B上n-1个盘子再放到C上,那问题就能得到解决,接着就是如何实现这两个步骤:
(A上的n-1个盘子放到B上)步骤1
hanoi(n - 1, one, three, two);//将one上n-1个盘子通过three放到two上
(A上最大的盘子就能放到C上)
move(one, three);
(将B上n-1个盘子再放到C上)步骤2
hanoi(n - 1, two, one, three);//将two上n-1个盘子通过one放到three上
(A上的n-1个盘子放到B上)实现方法:将A上的n-2个盘子放到C上,再将A上的第n-1个盘子放到B上,最后将C上的n-2个盘子放到B上,层层递归,就能实现这个步骤。
以上是以三个盘子为例进行输出,n个盘子实现过程相同,三个盘子执行递归过程如下:
1、hanoi(3, A,B,C) (A=one,B=two,C=three) ->
2、hanoi(2, A,C,B) (A=one,B=three,C=two)实参值改变了导致与上一次实参对应形参值有所不同 ->
3、hanoi(1, A,B,C) (A=one,B=two,C=three)