1. 并查集原理
在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-find set)。
一个值或者多个值可以认为是一个集合;
并查集是使用一棵树来表示一个集合;
并查集的本质是由多棵树构成的森林
;
便于理解并查集:
比如:某公司今年校招全国总共招生10人,西安招4人,成都招3人,武汉招3人,10个人来自不同的学校,起先互不相识,每个学生都是一个独立的小团体(每个学生都是一颗独立的树),现给这些学生进行编号:{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
负数表示根,根位置的绝对值表示树的结点个数,孩子存储着父亲的下标。
毕业后,学生们要去公司上班,每个地方的学生自发组织成小分队一起上路,于是:西安学生小分队s1={0,6,7,8},成都学生小分队s2={1,4,9},武汉学生小分队s3={2,3,5}就相互认识了,10个人形成了三个小团体。假设右三个群主0,1,2担任队长,负责大家的出行。
在公司工作一段时间后,西安小分队中8号同学与成都小分队4号同学奇迹般的走到了一起,两个小圈子的学生相互介绍,最后成为了一个小圈子:
4号和8号成为了朋友,并不是两个元素合并,而是两个圈子合并。
现在0集合有7个人,2集合有3个人,总共两个朋友圈。
通过以上例子可知,并查集一般可以解决一下问题:
- 查找元素属于哪个集合沿着数组表示树形关系以上一直找到根(即:树中中元素为负数的位置)
- 查看两个元素是否属于同一个集合沿着数组表示的树形关系往上一直找到树的根,如果根相同表明在同一个集合,否则不在
- 将两个集合归并成一个集合将两个集合中的元素合并将一个集合名称改成另一个集合的名称
- 集合的个数遍历数组,数组中元素为负数的个数即为集合的个数。
2. 并查集实现
#include<iostream>
#include<vector>
using namespace std;
class UnionFindSet
{
public:
//一开始每一个都表示一个独立的集合
UnionFindSet(size_t n)
{
_v.resize(n, -1);
}
int FindRoot(int x)
{
//一直找到负数停止
while (_v[x] >= 0)
{
x = _v[x];
}
return x;
}
//判断x和y是否在一个集合,如果不在那就合并
bool Union(int x1, int x2)
{
int root1 = FindRoot(x1);
int root2 = FindRoot(x2);
//如果两个根是相同的,那么这两个数就在一个集合,不相同说明不在一个集合,那就进行合并
if (root1 == root2)
return false;
//走到这里已经说明了两个数不是一个集合的,所以需要合并
_v[root1] += _v[root2];
_v[root2] = root1;
return true;
}
//数组中,负数的个数,即为集合的个数
size_t Count()
{
size_t Count = 0;
for (auto& e : _v)
{
if (e < 0)
++Count;
}
return Count;
}
private:
vector<int> _v;
};
3. 并查集应用
- LeetCode第990题.等式方程的可满足性
解题思路:
- 将所有"=="两端的字符合并到一个集合中
- 检测"!="两端的字符是否在同一个集合中,如果在则不满足,如果不在则满足
class UnionFindSet
{
public:
//一开始每一个都表示一个独立的集合
UnionFindSet(size_t n)
{
_v.resize(n, -1);
}
int FindRoot(int x)
{
//一直找到负数停止
while (_v[x] >= 0)
{
x = _v[x];
}
return x;
}
//判断x和y是否在一个集合,如果不在那就合并
bool Union(int x1, int x2)
{
int root1 = FindRoot(x1);
int root2 = FindRoot(x2);
//如果两个根是相同的,那么这两个数就在一个集合,不相同说明不在一个集合,那就进行合并
if (root1 == root2)
return false;
//走到这里已经说明了两个数不是一个集合的,所以需要合并
_v[root1] += _v[root2];
_v[root2] = root1;
return true;
}
//数组中,负数的个数,即为集合的个数
size_t Count()
{
size_t Count = 0;
for (auto& e : _v)
{
if (e < 0)
++Count;
}
return Count;
}
private:
vector<int> _v;
};
//将所有"=="两端的字符合并到一个集合中
//检测"!="两端的字符是否在同一个集合中,如果在则不满足,如果不在则满足
class Solution {
public:
bool equationsPossible(vector<string>& equations) {
UnionFindSet ufs(26);
for(auto& str: equations)
{
if(str[1] == '=')
{
//说明两个字母是属于一个集合的
ufs.Union(str[0]-'a',str[3]-'a');
}
}
for(auto& str: equations)
{
if(str[1] == '!')
{
//判断两边是否在同一集合内
if(ufs.FindRoot(str[0]-'a') == ufs.FindRoot(str[3]-'a'))
return false;
}
}
return true;
}
};