Adobe photoshop工具箱工具名称中英文对照

    网上关于photoshop菜单中英文对照的文章可谓不少,不过关于photoshop工具箱工具英文名称的文章就没那么多了,使用百度搜索,翻了十来页,竟没有发现一篇有关photoshop工具箱英文名称的文章。为了方便大家学习,今天我抽了些时间把photoshop工具箱工具名称中英文对照整理一下,希望对大家学习有所帮助。

1、矩形选框工具:rectangular marquee tool

2、椭圆选框工具:elliptial marquee tool

3、单行选择工具:single row marquee tool

4、单列选择工具:single column marquee tool

    

5   选择工具: Move tool

6、套索工具:lasso tool

7、多边形套索工具:polygonal lasso tool

8、磁性套索工具:magnetic lasso tool

   

9、魔术棒工个:magic wand tool

10、快速选择工具:quick selection tool

11、裁切工具:crop tool

12、切片工具:slice tool

13、切片选择工具:slice select tool

14、吸管工具:eyedropper tool

15、取样点工具:color sampler tool

16、测量工具:ruler tool

17、注释工具:note tool

18、计数工具:count tool

    

19、污点修复画笔工具:spot healing brush tool

20、修复画笔工具: healing brush tool

21、修补工具:patch tool

22、红眼工具:red eye tool

23、画笔工具:brush tool

24、铅笔工具:pencil tool

25、颜色替换工具:color replacement tool

26、仿制图章工具:clone stamp tool

27、图案图章工具:pattern stamp tool

28、历史记录画笔工具:history brush tool

29、历史记录艺术画笔工具:art history bursh tool

30、橡皮檫工具:eraser tool

31背景橡皮擦工具:background eraser tool

32、魔术橡皮擦工具:magic eraser tool

   

33、渐变工具:gradient tool

34、颜色填充工具:paint bucket tool

  

35、模糊工具:blur tool

36、锐化工具:sharpen tool

37、涂抹工具:smudge tool

38、减淡工具:dodge tool

39、加深工具:burn tool

40、海绵工具:sponge tool

41、钢笔工具:pen tool

42、自由钢笔工具:freeform pen tool

43、添加锚点工具:add anchor point tool

44、删除锚点工具:delete anchor point tool

45、转换点工具:convert point tool

46、横排文字工具:horizontal type tool

47、竖排文字工具:vertical type tool

48、路径选择工具:path selection tool

49、直接选择工具:direct selection tool

50、矩形工具:rectangle tool

51、圆角矩形工具:rounded rectangle tool

52、椭圆工具:ellipse tool

53、多边形工具:polygon tool

54、直线工具:line tool

55、自定义形状工具:custom shape tool

56、手形工具:hand tool

57、旋转视图工具:rotate view tool

58放大镜工具:zoom tool

由于时间仓促,以上内容难免有不妥甚至错误之处,希望大家给出宝贵意见。

### 如何在 Python 中实现分段回归模型 为了实现在 Python 中构建分段回归模型,可以采用 `numpy` 和 `scipy` 这样的科学计算库来处理数据并执行统计分析。对于可视化部分,则可借助于 `matplotlib` 或者更高级别的绘图工具如 `seaborn` 来完成。 下面是一个简单的例子,展示了如何创建一个具有两个断点的一维分段线性回归模型: ```python import numpy as np from scipy import optimize import matplotlib.pyplot as plt def piecewise_linear(x, x0, y0, k1, k2): """定义分段函数""" return np.piecewise( x, [x < x0], [ lambda x: k1 * x + y0 - k1 * x0, lambda x: k2 * x + y0 - k2 * x0, ], ) # 创建一些模拟的数据集 np.random.seed(42) n_points = 15 x_data = np.linspace(-2, 12, n_points) y_true = piecewise_linear(x=x_data, x0=5, y0=7, k1=-1, k2=1.5) # 添加噪声 noise_level = 0.5 y_noisy = y_true + noise_level * np.random.randn(len(y_true)) # 使用最小二乘法拟合参数 params, params_covariance = optimize.curve_fit(f=piecewise_linear, xdata=x_data, ydata=y_noisy) print("Estimated parameters:", params) plt.figure(figsize=(8, 6)) plt.scatter(x_data, y_noisy, label="Data", color='gray') xfit = np.linspace(min(x_data), max(x_data), num=100) plt.plot(xfit, piecewise_linear(xfit, *params), 'b-', lw=2, label="Fitted line") plt.fill_between( xfit, piecewise_linear(xfit, *(params - 1.96 * np.sqrt(np.diag(params_covariance)))), piecewise_linear(xfit, *(params + 1.96 * np.sqrt(np.diag(params_covariance)))), alpha=.3, color='blue', label="Confidence interval" ) plt.legend() plt.show() ``` 上述代码片段首先定义了一个名为 `piecewise_linear()` 的辅助函数用来表示两段斜率不同的直线连接而成的曲线;接着生成了一些带有随机扰动的真实观测值作为输入样本;最后利用 SciPy 提供的优化模块中的 `curve_fit()` 函数来进行非线性的参数估计,并绘制出最终的结果图表[^1]。 #### 关键要点说明 - **分段函数设计**:通过自定义的 `piecewise_linear()` 函数实现了特定形式的分段关系。 - **数据生成与噪音引入**:构造了一组理想情况下的理论输出以及加入了高斯白噪后的实际测量结果。 - **参数求解方法**:采用了基于梯度下降原理的最优化技术寻找最佳匹配系数向量。 - **不确定性量化**:给出了由 Bootstrap 技术导出的经验分布所对应的近似置信带[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值