阿尔法星球的专栏

让学习成为一种习惯

  • 博客(282)
  • 资源 (3)
  • 收藏
  • 关注

原创 多模态融合(红外+可见光)夜间行人检测与跟踪系统设计与优化

本文提出了一种基于红外和可见光双模态融合的行人检测与跟踪系统。系统采用中期特征融合策略,设计了照明感知自适应融合模块和行人模态自适应权重融合模块(PMWM),通过动态加权实现不同光照条件下的最优检测性能。针对夜间场景,系统采用差分模态特征融合和轻量化设计,在保持精度的同时提升实时性。关键技术包括双流CNN特征提取、跨模态特征校正、多尺度预测优化等,并提供了从研究原型到边缘部署的完整技术路线。实验表明,该系统在KAIST数据集上达到85%以上的mAP,优化后可在边缘设备实现60FPS的实时性能。

2025-12-13 16:41:53 438

原创 小样本学习下的医疗影像(CT/MRI)病灶分割与良恶性诊断系统开发

该系统的成功关键在于小目标感知增强与多模态临床融合的协同。建议采用STS-Net解决分割难题,WFF框架整合诊断信息,在标注稀缺时切换到WeakMedSAM弱监督模式。实际部署时,2.5D方案在精度与效率间提供了最佳平衡点。

2025-12-13 16:37:41 266

原创 融合注意力机制与Transformer的无人机航拍图像语义分割实战研究

本文探讨了无人机航拍图像分割的技术挑战与前沿解决方案。针对无人机图像尺度变化大、小目标占比低等特点,分析了传统CNN和Transformer的局限性,提出多尺度自注意力优化、编解码特征融合等改进方向。重点介绍了UMFormer、UTFormer和UAVSNet三种先进网络架构,分别采用多尺度自注意力、三重注意力机制和重叠标记嵌入技术,在UAVid等数据集上实现60+FPS实时性和75%+mIoU的精度。文章详细解析了数据预处理、注意力模块实现、性能优化等实战技巧,并对比了主流数据集特性。通过环境配置、模型轻

2025-12-13 16:33:34 156

原创 基于改进YOLOv11的工业零件表面缺陷检测与量化分析系统设计与实现

【代码】基于改进YOLOv11的工业零件表面缺陷检测与量化分析系统设计与实现。

2025-12-13 16:28:37 10

原创 Makefile自动化编译实战项目完整指南

本文详细介绍了C/C++项目Makefile的编写方法,从基础到企业级应用。内容涵盖:1)项目结构组织;2)Makefile核心语法三要素;3)自动化文件发现与依赖管理;4)静态/动态库构建;5)多目录大型项目架构;6)并行编译与性能优化;7)跨平台支持;8)调试技巧与常见问题解决。通过实战示例展示了完整的Makefile实现,包括目录管理、版本控制、安装部署等企业级功能。最后推荐了进阶学习路径和工具链,帮助开发者构建高效、可维护的编译系统,显著提升项目构建速度与跨平台兼容性。

2025-12-13 15:44:20 228

原创 解锁Buffer内存管理:从原理到实战的性能优化指南

Buffer管理是现代计算系统中性能优化的关键环节,其核心在于消除速度鸿沟,通过内存缓存加速数据访问、延迟批量写入和分级管理热点数据。不同系统采用不同管理策略,如操作系统托管或应用层自管理,各有优缺点。数据库、应用层和嵌入式系统各有优化方案,如MySQL的Buffer Pool调优、Python内存池机制和嵌入式动态内存池设计。性能优化需遵循监控先行、参数调整和灰度验证三步法,避免过度分配等常见陷阱。未来趋势包括WebAssembly集成、AI驱动的自动优化和Serverless适配。Buffer管理需要全

2025-12-13 15:36:15 631

原创 【Linux指南】Makefile进阶:通用化语法与实战技巧

伪目标是Makefile中用于表示一组操作或任务的集合,而不是实际的文件名。提高构建过程的清晰度伪目标可以将相关的构建任务组织在一起,使Makefile的结构更加清晰和易于理解。例如,all伪目标通常用于表示项目的完整构建过程,而clean伪目标用于清理构建生成的文件。示例clean:在这个例子中,all和clean伪目标分别表示完整的构建过程和清理过程,使Makefile的结构更加清晰。避免文件名冲突伪目标可以避免与实际文件名冲突。例如,如果项目中存在名为all或clean。

2025-08-25 15:40:32 347

原创 基于 Spring Validation 实现全局参数校验异常处理

为了实现全局异常处理,首先需要定义一个标准化的响应体,用于统一返回错误信息。这种标准化的响应体可以包含时间戳、状态码、错误信息等字段,方便前端开发者根据返回的错误信息进行提示。响应体结构:定义一个ApiError类,作为统一的错误响应体。timestamp:记录错误发生的时间戳。status:HTTP 状态码,表示错误的类型。errors:一个包含错误信息的列表,每个错误信息包含字段名和错误提示。示例代码:import java . time . LocalDateTime;

2025-08-25 15:35:11 100

原创 Coze+ComfyUI 实战:视频制作成本降10 倍,高质量成片这么做

摘要: Coze与ComfyUI结合显著降低视频制作成本,通过AI生成与智能剪辑减少人力(降70%)、时间(降80%)和设备依赖(降90%)。文生视频流程中,Coze快速匹配脚本生成内容(1分钟视频仅需5分钟),ComfyUI提供拖拽编辑与实时协作;图生视频流程则通过图片素材动态化提升效率。两种云端方案进一步优化成本:仙宫云按小时计费,适合企业批量生产(每分钟视频成本约几毛钱);Running Hub按任务计费(5秒分镜4分钱),灵活适配零散需求。整体方案兼顾效率与质量,大幅降低传统制作门槛。

2025-08-25 15:24:39 231

原创 java程序员必须掌握的InheritableThreadLocal

是 Java 提供的一种线程局部变量存储机制,它继承自类,但与不同的是,它允许子线程继承父线程的变量副本。在多线程编程中,用于为每个线程提供独立的变量副本,以避免线程之间的数据共享和竞争条件。然而,当需要在子线程中访问父线程的变量时,本身无法实现这一功能,而则可以解决这个问题。例如,在一个线程池中,父线程可能设置了一些线程局部变量,而子线程需要访问这些变量。使用,子线程可以自动继承父线程的变量副本,从而实现线程间的数据传递。

2025-08-25 15:18:10 262

原创 借助CSS实现自适应屏幕边缘的tooltip

自适应屏幕边缘的Tooltip实现原理与动态调整 本文介绍了基于CSS和JavaScript实现自适应屏幕边缘Tooltip的技术方案。文章分为两部分:第一部分阐述CSS基础定位原理和Tooltip基本样式实现,重点讲解绝对定位、固定定位和相对定位的应用;第二部分详细说明自适应屏幕边缘的逻辑,包括检测屏幕边界的方法和动态调整位置的实现技术。通过JavaScript检测视口尺寸和元素位置,结合CSS动态样式调整,实现Tooltip在不同屏幕尺寸下的自适应显示。文中提供了完整的代码示例,展示了如何通过边界判断逻

2025-08-25 15:06:51 140

原创 前端性能优化终极指南

文章摘要:2025年前端性能优化关键技术 本文系统分析了2025年前端性能优化的核心技术方案。通过四大维度展开:1)框架与工具优化,重点解析React 19并发渲染和Vue 4.0 WebAssembly加速;2)网络层创新,包括HTTP/3协议优势和QUIC弱网优化;3)运行时性能方案,涉及Web Worker多线程和WebAssembly高性能计算;4)核心Web指标优化实践。文章通过真实案例数据验证优化效果,如React 19使重渲染减少80%、HTTP/3提升弱网传输效率58%等,为开发者提供了一套

2025-08-19 12:29:06 402

原创 unibest + uView Pro 高效开发全攻略

unibest + uView Pro 高效开发全攻略 本文介绍了如何利用unibest框架与uView Pro组件库构建高效跨端应用。主要内容包括: 环境配置:推荐Node.js 18+和pnpm管理工具,安装必要开发环境 项目初始化:使用unibest脚手架创建项目,分析其约定式目录结构 UI集成:详细讲解uView Pro的安装和全局配置步骤 实战案例: 基础组件(按钮、输入框)使用示例 复杂表单联动验证与自动计算功能实现 包含表单数据监听、动态验证规则设置等核心逻辑 该组合方案可显著提升开发效率,适

2025-08-19 12:27:35 236

原创 Node.js v24.6.0 新功能速览

Node.js v24.6.0带来多项核心功能增强:支持系统CA证书(NODE_USE_SYSTEM_CA)、新增后量子加密算法ML-DSA、优化Zstd压缩字典支持、改进HTTP连接保持机制,以及移植高性能日志流Sonicboom。该版本在异步I/O、数据处理和内存管理方面均有显著性能提升,特别适合高并发场景。建议开发者测试兼容性后升级,充分利用新特性提升应用的安全性和效率。

2025-08-19 12:21:49 765

原创 搭建自助Git 服务Gogs教程

Gogs是一款基于Go语言开发的轻量级Git服务,支持私有仓库搭建,具有安装简单、资源占用低等特点。本文介绍了Gogs的系统要求、Docker部署方式、初始化配置步骤以及基本使用方法,包括仓库创建和用户管理。同时提供了常见问题解决方案,如SSH连接和数据库问题,并强调了安全更新的重要性。通过Docker部署,用户可快速搭建私有Git服务,适合个人开发者和小型团队使用。Gogs以低资源消耗和易用性成为GitLab的轻量替代方案。

2025-08-19 12:02:18 1107

原创 Chrome插件开发实战教程:从入门到发布(Manifest V3)

本文详细介绍了基于Manifest V3的Chrome插件开发全流程。首先介绍了开发环境搭建和Manifest V3核心配置,重点解析了项目结构和三大核心组件:Popup页面、Background Service Worker和Content Scripts。文章详细讲解了组件间的通信机制,包括短连接和长连接两种方式。最后提供了调试优化技巧和发布流程,涵盖了常见问题解决方法、性能优化建议以及打包发布注意事项,为开发者提供了一套完整的Chrome插件开发实践指南。

2025-08-19 11:21:07 1273

原创 Rembg开源神器一键抠图教程

Rembg是一款基于AI的开源图像背景移除工具,支持多种使用方式(命令行、Python API、Web界面)。该工具采用U2Net、ISNet等深度学习模型,能精准处理复杂边缘,完全免费且支持本地部署。提供CPU/GPU安装选项,支持单文件或批量处理,内置多种预训练模型适用于不同场景。高级功能包括Alpha Matting参数调优、模型选择优化等。还推荐了第三方GUI工具和插件集成方案,并提供了常见问题解决方法。Rembg以其高效算法和多样化的使用方式,成为2025年广受欢迎的专业级图像处理工具。

2025-08-17 13:46:27 1408

原创 PyTorch实战:基于CNN的Fashion-MNIST图像分类教程

本教程介绍了使用PyTorch构建CNN模型进行Fashion-MNIST图像分类的完整流程。主要内容包括:环境配置(PyTorch安装与验证)、数据集介绍与预处理、CNN模型原理与实现(包含两个卷积层和全连接层)、以及模型训练评估方法。教程提供了详细的代码示例,涵盖数据加载、模型定义、训练循环和测试评估等关键步骤,适合深度学习初学者入门实践。通过本教程,读者可以掌握基础的图像分类任务实现方法,为进一步学习计算机视觉奠定基础。

2025-08-17 13:37:52 241

原创 Ventoy多系统启动使用教程

Ventoy是一款创新的开源多系统启动U盘工具,只需一次安装即可通过直接拷贝ISO等镜像文件实现多系统启动。它支持1200+操作系统,兼容BIOS/UEFI模式,提供持久化存储、自动安装等高级功能。安装简单,Windows/Linux系统均可使用。Ventoy彻底改变了传统启动盘制作方式,无需反复格式化,极大简化了多系统启动盘的制作流程,是技术人员和电脑爱好者的理想工具。

2025-08-16 17:43:51 2200

原创 Aider 搭建教程

Aider 是一款代码助手工具,提供多种安装方式:推荐使用 aider-install 或一键脚本快速安装,支持 uv 和 pipx 等包管理工具安装,也可通过 pip 在虚拟环境中安装。Docker 部署提供核心版和完整版镜像,支持项目目录映射和 API 密钥配置。使用时可添加/编辑文件,切换不同 AI 模型(如 OpenAI、Claude、DeepSeek),通过自然语言指令交互,支持多行输入和常用命令如撤销、运行、查看差异等。

2025-08-14 17:28:12 999

原创 基于卷积神经网络实现美食分类

本文探讨了基于卷积神经网络实现美食分类技术的应用场景拓展,重点聚焦于美食推荐系统集成和移动端应用适配。在美食推荐系统方面,通过个性化推荐、场景化推荐、实时推荐和跨平台推荐,显著提升了推荐系统的准确性和用户体验。在移动端应用适配方面,通过轻量级模型优化、离线识别功能、用户交互界面设计以及实时反馈与更新,使美食分类技术能够在移动设备上高效运行并提供便捷服务。这些拓展应用不仅增强了美食分类技术的实用性,也为用户带来了更加丰富和便捷的美食体验。

2025-06-25 12:53:14 104

原创 双向LSTM模型完成IMDB文本分类

本研究深入探讨了双向长短期记忆网络(Bi-LSTM)在IMDB文本分类任务中的应用。实验结果表明,Bi-LSTM模型在测试集上取得了88.5%的准确率和89%的F1分数,展现出良好的性能。Bi-LSTM通过同时学习前向和后向的上下文信息,能够更全面地捕捉文本中的语义特征,有效处理长文本序列,避免了传统RNN的梯度消失问题。研究还优化了数据预处理流程,提出了合理的超参数调整策略。未来的研究方向包括引入注意力机制、探索多语言支持、拓展跨领域应用以及模型轻量化。

2025-06-25 12:50:56 106

原创 搭建CNN卷积神经网络,实现珍稀动物检测

本文探讨了利用CNN卷积神经网络实现珍稀动物检测的挑战及解决方案。主要面临小样本学习、数据不平衡和模型泛化能力不足三大问题。针对小样本学习,采用数据增强、迁移学习和元学习方法;针对数据不平衡,采用重采样、类别权重调整和改进损失函数;针对泛化能力不足,通过数据多样性增强、正则化技术和交叉验证提升模型性能。这些方法能够有效提高CNN在珍稀动物检测任务中的准确性和鲁棒性。

2025-06-25 12:36:41 243

原创 使用TextCNN模型新闻文本分类

本文深入探讨了TextCNN模型在新闻文本分类任务中的应用现状,并提出了未来的发展方向。TextCNN凭借其高效的卷积神经网络结构,在新闻文本分类中取得了显著成果,但仍有改进空间。未来可从多尺度特征融合、结合Transformer架构、增强模型可解释性以及对抗训练提升鲁棒性等方面对TextCNN进行优化。此外,该模型的应用领域还可拓展至社交媒体舆情分析、金融领域文本分析、医疗健康领域文本处理以及智能客服与问答系统等,具有广阔的应用前景和重要的研究价值。

2025-06-25 12:03:56 100

原创 部署层技术深度剖析

DeepSeek在模型架构方面进行了诸多创新,以满足不同场景下的高效运算与精准预测需求。

2025-05-04 15:55:46 192

原创 训练层:技术优势与未来发展方向

DeepSeek的模型架构设计体现了其对效率与性能的双重追求。其采用了分层架构,底层是大规模的分布式计算框架,能够支持海量数据的并行处理。中间层是深度学习模型的核心部分,包括多层神经网络结构,每层网络都经过精心设计以提取数据中的关键特征。顶层则是应用接口,方便用户将模型集成到不同的应用场景中。这种分层架构使得DeepSeek能够灵活应对各种任务需求,同时保持高效的计算性能。

2025-05-04 15:55:30 257

原创 底层架构:技术瓶颈与发展方向

Transformer架构是DeepSeek底层技术的重要基础,其优化工作主要集中在提升计算效率和模型性能方面。通过引入稀疏注意力机制,DeepSeek将模型的计算复杂度从O(n²)降低至O(n),显著提升了处理大规模数据集的能力。例如,在处理包含10亿个词的文本数据时,优化后的Transformer架构能够将训练时间缩短约40%,同时保持模型的准确率在95%以上。

2025-05-04 15:55:08 150

原创 边缘端部署方案

模型架构创新:DeepSeek的轻量化模型设计、多模态融合架构以及自适应动态架构,使其在边缘端部署时能够有效应对资源受限、数据复杂多模态以及动态网络环境等问题,显著提升了模型的运行效率、准确性和稳定性。训练优化技术:分布式训练框架、迁移学习与预训练、自适应学习率调整以及数据增强与正则化等技术的应用,大幅提高了模型的训练速度、适应性、精度和泛化能力,为边缘端部署提供了高质量的模型基础。云边协同方案。

2025-05-04 15:54:30 1428

原创 参数共享技术

参数共享是深度学习中一种重要的技术手段,指的是在神经网络的不同部分(如不同的层、不同的模块或不同的模态)之间共享同一组参数,而不是为每个部分独立地学习一组参数。减少模型参数量:通过共享参数,可以显著减少模型的参数总数,从而降低模型的复杂度和存储需求。例如,在传统的卷积神经网络(CNN)中,卷积核的参数在整个输入图像的不同位置上是共享的,这使得模型能够在处理大规模图像数据时,仍然保持相对较小的参数量,避免了参数数量的爆炸式增长。提高模型的泛化能力。

2025-05-04 15:54:03 169

原创 混合精度训练框架

混合精度训练是一种在深度学习模型训练过程中,结合使用单精度浮点数(FP32)和半精度浮点数(FP16)的训练方法。其基本原理是利用半精度浮点数在计算速度和内存占用方面的优势,同时通过适当的策略确保模型训练的精度和稳定性。具体而言,半精度浮点数的存储空间仅为单精度浮点数的一半,计算速度也更快,但其数值范围和精度相对较低。因此,在混合精度训练中,关键的计算步骤(如前向传播)使用半精度浮点数,而对精度要求较高的部分(如梯度更新)则使用单精度浮点数。

2025-05-04 15:53:37 174

原创 PTX层指令优化:性能提升与应用效果分析

GPU架构是一种并行计算架构,其设计初衷是为了图形渲染,但随着技术的发展,它在通用计算领域也得到了广泛应用。GPU由多个流处理器(Streaming Multiprocessors,SM)组成,每个SM包含多个执行单元,能够同时处理大量线程。这种架构使得GPU在处理并行任务时具有显著优势,尤其是在深度学习、科学计算等领域。PTX(Parallel Thread Execution)层是NVIDIA GPU架构中的一个关键抽象层,它位于CUDA编程模型和GPU硬件之间。

2025-05-04 15:53:08 411

原创 自动验证机制:底层技术与应用实践

自动验证机制是指在人工智能系统中,通过自动化手段对模型的性能、行为和结果进行检查、评估和确认的过程。它通常包括对模型的准确性、可靠性、安全性、公平性等多个方面的验证。在DeepSeek的底层技术中,自动验证机制是确保模型质量和系统稳定性的关键环节。例如,DeepSeek的自动验证机制可以实时监测模型在不同数据集上的表现,自动检测模型是否存在偏差或异常行为,并及时调整模型参数或发出警报。

2025-05-04 15:52:43 101

原创 零样本强化学习(RL-Zero)技术解析

DeepSeek是一家专注于人工智能前沿技术研发的公司,其发展历程体现了对技术创新的持续追求。

2025-05-04 15:52:05 685

原创 混合专家系统(MoE)架构创新:挑战与解决方案

DeepSeek的底层技术混合专家系统(MoE)架构是一种创新的模型结构,其核心由多个专家模块和一个门控机制组成。每个专家模块负责处理特定类型的输入数据或特定的任务子集,这些专家模块可以是小型的神经网络或其他类型的计算单元。例如,在处理自然语言处理任务时,不同的专家模块可以专注于语法分析、语义理解或情感分析等不同的子任务。门控机制则根据输入数据的特征动态地选择合适的专家模块进行处理,从而实现高效的计算资源分配和任务处理。这种架构设计使得模型能够更好地适应多样化的任务需求,提高模型的灵活性和性能。

2025-05-04 15:51:06 928

原创 扩散模型基础—理论与实践

扩散模型作为一种新兴的生成模型,在理论与实践方面均取得了显著进展,展现出强大的生成能力和广阔的应用前景,但同时也面临着一些挑战。

2025-04-17 13:48:32 456

原创 基于BiSeNet的表面缺陷分割实战

基于BiSeNet的表面缺陷分割技术在多个工业领域具有广泛的应用前景,尤其是在电子制造、汽车制造和航空航天等行业,表面缺陷检测是质量控制的关键环节。电子制造:在电子制造领域,表面缺陷检测主要针对芯片、电路板等零部件。例如,芯片表面的划痕、凹坑等缺陷可能会影响其性能和可靠性。BiSeNet模型能够快速准确地检测出这些微小缺陷,其检测精度可达微米级别。在实际生产中,BiSeNet模型被应用于在线检测系统,能够在生产线的实时监控中快速识别缺陷,缺陷检测速度达到每秒处理10张图像以上,显著提高了生产效率和产品质量。

2025-04-17 13:43:47 155

原创 SSE实战:构建在线人数实时推送系统

服务器发送事件(Server-Sent Events,SSE)是一种允许服务器向浏览器推送实时更新的技术。它基于HTTP协议,通过建立一个持久连接,使服务器能够主动向客户端发送数据。messagemessage\n\n客户端会依次接收到这两条消息,并触发两次message事件。

2025-04-17 12:52:18 118

原创 Java中的ABA问题:多线程编程的“隐形杀手”

ABA问题是指在多线程环境中,一个线程读取到变量的值为A,然后在该线程进行操作的过程中,变量的值被其他线程修改为B,之后又被修改回A。当第一个线程再次读取变量值时,虽然值仍然是A,但变量实际上已经经历了A-B-A的变化过程。这种情况下,如果第一个线程基于变量值未改变的假设进行操作,可能会导致错误的结果。ABA问题的出现背景与现代计算机系统的多核多线程架构密切相关。随着多核处理器的普及,多线程编程成为提高程序性能和资源利用率的重要手段。

2025-04-16 14:51:51 248

原创 Java线程生命周期:从创建到终止的全解析

在Java中,Thread类是创建线程的基础。通过继承Thread类并重写run方法,可以定义线程的执行逻辑。这种方式简单直接,但缺点是无法实现多继承,因为Java不支持多继承,而线程类已经继承了Thread。

2025-04-16 14:49:25 332

原创 深度学习之图像分割—理论与实践

图像分割是计算机视觉中的一个重要任务,它将图像划分为多个具有相似属性的区域或对象。图像分割的目的是将图像中的目标对象与背景分离,从而为后续的图像分析和处理提供基础。图像分割在医学图像分析、遥感图像处理、自动驾驶等领域有着广泛的应用。医学图像分析:在医学领域,图像分割用于分割出医学图像中的器官、组织和病变区域。例如,在磁共振成像(MRI)图像中,通过图像分割可以准确地分割出大脑的不同区域,如灰质、白质和脑室等。这有助于医生对疾病进行诊断和治疗。

2025-04-05 12:05:26 86

基于Qt的数据处理和数据分析软件

在数据处理过程往往有很多重复性的工作,尤其针对科研实验数据,有可能要面对n组数据,每组数据的清洗抽取方式基本是一样的,因此我希望一个数据处理软件应该是带有工作流功能的,当然python是很容易实现上述功能,但要求有一定的开发基础且要熟悉一些库才能得心应手 python的pandas、numpy、scipy是数据处理的三大利器,通过python进行数据处理过程,如此多的数据清洗方法,除非你把整个文档浏览一遍,否则你很难想起他们,因此一个交互式的数据清洗工具是很有必要的,把功能通过GUI明确的展现给用户,这样数据处理过程不需要长时间的翻阅文档 最后也是我用matlab和python这类数据处理工具最头疼的一点,就是数据可视化,虽然matlab和python能做出很漂亮的图,但细微的调节非常令人抓狂,例如要调整一个文本的位置,交互式的设计你只需要拖动一下鼠标,但在脚本语言里你要指定它的坐标,如果图片非常大,渲染时间比较久,那么移动一个文本到你想要的地方是一件令人非常抓狂的事情,而且matlab或者matplotlib的数据可视化函数有多有细,每次操作都要查阅半天文档 ...

2024-11-06

华为校园招聘编程试题汇总

华为校园招聘编程试题汇总

2024-10-29

使用react框架 借助umi搭建的纯净版快速开发平台

介绍 使用 react 框架 借助 umi 搭建的纯净版快速开发平台 springcloud-base 的配套前端项目 springcloud-base https://gitee.com/ben-bo-ba/springcloud-base

2024-06-20

neural-network-learning-master.zip 神经网络学习

介绍 各种网络学习及实践 软件架构 使用Pytorch进行训练

2024-06-20

SpringCloud项目,Leo微服务工程的总体框架

核心组件: Nacos作为注册中心、配置中心 Apache Dubbo作为服务调用(RPC)框架 Seata 解决分布式事务 网关使用Spring Cloud Gateway,集成Sentinel熔断限流 使用RocketMQ消息队列 使用Spring Cloud Sleuth + ZipKin 的链路追踪 使用ElasticSearch全文搜索

2024-06-07

本人的南京大学操作系统实验课程加docker环境

操作系统实验

2024-06-07

data-structure-demos-hans-main.zip

用C++编写Python扩展的入门项目。实现了一些常用的数据结构:树状数组、二分查找……

2024-06-07

aim-develop.zip

Aim是一套基于Netty的消息JAVA推送框架,可应用于信令推送,即时聊天,移动设备指令推送等领域。开发者可沉浸于业务开发,不用关心消息通道链接,消息编解码协议等繁杂处理;开源技术构建,易于扩展和使用,并完美支持集群部署支持海量链接,目前支持websocket,android,ios,桌面应用,系统应用等多端接入持,可应用于移动应用,物联网,智能家居,嵌入式开发,桌面应用,WEB应用即时消服务。

2024-06-07

kbgress-master.zip

它是kbnet开发框架的基础项目,为程序开发提供基础保障,如权限控制、令牌颁发和验证、网络安全、分布式计算和存储、工具类库等等。

2024-06-06

MeEdu-main.zip

MeEdu 是一款基于 PHP 开发的线上网校系统。支持线上点播 | 知识付费 | 网校装修 | 数据统计 | 会员模块 | 角色管理等丰富功能。MeEdu 采用前后端分离模式,覆盖 PC | H5 端口。特点:系统稳定 | 功能丰富 | 界面优美 | 持续迭代。截止目前,已超过 1000+ 个人/企业用户选用 MeEdu 搭建了他们的独立网校平台。

2024-06-06

black-vue-guidebook-main.zip

Vue 知识图谱 关于用法、响应式原理、编译原理以及生态

2024-06-06

snap7 PLC 通信库的 Python 包装器

关于 这是 snap7 的基于 ctypes 的 Python 包装器。Snap7 是一款开源、32/64 位、多平台以太网通信套件,用于与西门子 S7 PLC 进行本地交互。 Python-snap7 已在 Windows、Linux 和 OS X 上使用 Python 3.9+ 进行了测试。 完整文档可在阅读文档中找到。 安装 如果您在 Intel x64 或 ARM 64 兼容平台上运行 Windows、Mac OS X 或 GNU/Linux,则可以使用二进制轮安装: $ pip install python-snap7 否则,请阅读在线安装文档。

2024-06-06

用 Express 和 Vue3 搭建的 ChatGPT 演示网页

先决条件 节点 node需要版本^16 || ^18 || ^19(node >= 14需要安装fetch polyfill),使用nvm管理多个本地node版本 node -v 全国公共管理委员会 如果你尚未安装pnpm npm install pnpm -g 填写密钥 获取Openai Api Key或accessToken填写本地环境变量转至简介

2024-06-05

student-administration-master.zip

学生管理系统(适合c语言入门学习) Student Management System (Suitable for Beginner C Language Learning)

2024-06-05

StudentInfoManager-master.zip

这是一个基于 C 语言开发的学生信息管理系统,设计精良、界面友好,操作简便且优雅。系统提供了高效的数据管理功能,让用户能够轻松添加、修改和删除学生信息,是个很好的学习项目。

2024-06-05

采用VUE3+Nuxt3框架开发,专门为企业定制的SEO官方网站模板

1、定框架的大体方向。是选择Vue、React、Angular还是其他的框架,这个基本都是根据开源社区的活跃度和开发人员的技能掌握来决定。为什么说开源社区很重要呢?一方面是框架有缺陷会及时修复,另一方面是我们遇到问题之后很容易就能找到解决方案,如果说你遇到的问题是从来没有出现过的,那么恭喜你,你已经成为这款框架中极为顶尖的存在了! 推荐VUE 2、UI框架的选择。我们当然可以自己手写html和CSS,但是对于开发人员来说会耗费极大的时间去造轮子,从效率来说也很低。所以我们需要寻找一款适合自己的UI框架,美观、使用简单、拥抱前端框架(vue、react等)。还有就是,如果考虑到官网最SEO的情况,最好使用Nuxt3 推荐vuetify、Tailwindcss、Nuxt3.这些都需要在前期考虑,开发到一半再插入可能会动摇整个项目根基(要是报错就爽歪歪了)。 3、如果需要后端接口,那么Axios、Pinia也是必不可少的插件,如果有国际化的要求,让你的网站走向世界,那么加入i18n是一个不错的选择。 4、其他的工具类插件:day.js、useVue

2024-06-05

文件快递柜-轻量 FileCodeBox-Lite 匿名口令分享文本,文件,像拿快递一样取文件

主要特色 轻量简洁:Fastapi+Sqlite3+Vue2+ElementUI 轻松上传:复制粘贴,拖拽选择 多种类型:文本,文件 防止爆破:错误次数限制 防止滥用:IP限制上传次数 口令分享:随机口令,存取文件,自定义次数以及有效期 国际化:支持中文和英文 匿名分享:无需注册,无需登录 管理面板:查看所有文件,删除文件 一键部署:docker一键部署 自由拓展:S3协议、本地文件流,可根据需求在storage文件中新增存储引擎 简单明了:适合新手练手项目

2024-06-04

toBeBetterJavaer-master.zip

一份通俗易懂、风趣幽默的Java学习指南,内容涵盖Java基础、Java并发编程、Java虚拟机、Java企业级开发、Java面试等核心知识点。学Java,就认准二哥的Java进阶之路

2024-06-04

Digital-image-processing-system-main.zip

本系统基于MATLAB 的图像处理工具箱和图形用户界面(GUI)设计与实现,构建了一个面向对象且高度可视化的图像处理操作系统,该系统实现了图像增强、图像变换、图像滤波、图像分割、边缘检测等内容

2024-06-04

自动驾驶规划控制常用算法c++代码实现

项目依赖 本项目在Ubuntu 20.04下运行,windows下尚未尝试过,因此推荐使用Ubuntu系统。 - python3 - matplotlib - cmake - Eigen cmake的安装直接终端运行 sudo apt install cmake 如果在项目编译时报cmake版本低的错误,可参考该 博客 升级cmake。 对cmake操作不不够熟悉的同学可以先参考文档 学习。 Eigen在Linux下的安装直接使用命令 sudo apt-get install libeigen3-dev Eigen库采用模板编程技术,仅由一些头文件组成,运行速度快。用cmake管理项目的时候,只需要在CMakeLists.txt里面添加头文件的路径即可: find_package(Eigen3 REQUIRED) include_directories(${EIGEN3_INCLUDE_DIR}) ...

2024-06-04

网络工程网络设备选型与配置方案试题解析:涵盖交换设备、网络协议及安全设备的应用场景与配置要点

内容概要:本文档为《网络设备选型与配置方案试题及答案》,涵盖多项选择题、判断题、简答题和论述题四个部分。多项选择题涉及网络设备分类、协议层级、功能用途等;判断题检验对网络设备基本特性的理解;简答题探讨选型考虑因素、VLAN概念及其作用、配置关键步骤、冗余设计目的及实现;论述题则深入讨论成本与性能的平衡策略以及配置过程中的实际问题与解决方法。; 适合人群:从事网络工程、信息技术管理等相关领域的技术人员,特别是初学者或有一定经验但希望巩固基础知识的专业人士。; 使用场景及目标:①作为培训教材,帮助学员掌握网络设备的基础理论和实际操作技能;②用于自我评估,检验个人对网络设备选型与配置的理解程度;③为实际项目中的设备选型和配置提供参考依据。; 其他说明:文档不仅提供了详细的题目解析,还结合了实际案例进行分析,有助于读者更好地理解和应用所学知识。建议读者在学习过程中注重理论联系实际,多做练习题,并结合具体应用场景加深理解。

2025-04-17

Warm-Flow工作流

Warm-Flow国产工作流引擎,其特点简洁轻量,五脏俱全,可扩展,是一个可通过jar引入设计器的工作流。 简洁易用:只有7张表,代码量少,可快速上手和集成 审批功能:支持通过、退回、任意跳转、转办、终止、会签、票签、委派和加减签、互斥和并行网关 监听器与流程变量:支持四种监听器,可应对不同场景,灵活可扩展,参数传递,动态权限 流程图:流程引擎自带流程图,可在不集成流程设计器情况下使用 流程设计器:可通过jar包形式快速集成到项目,减少繁琐代码搬运和适配 条件表达式:内置常见的和spel条件表达式,并且支持自定义扩展 办理人变量表达式:内置${handler}和spel格式的表达式,可满足不同场景,灵活可扩展 orm框架扩展:目前支持MyBatis、Mybatis-Plus、Mybatis-Flex和Jpa,后续会由社区提供其他支持,扩展方便 数据库支持:目前支持MySQL 、Oracle 和PostgreSQL,后续会继续支持其他数据库或者国产数据库 多租户与软删除:流程引擎自身维护多租户和软删除实现,也可使用对应orm框架的实现方式 同时支持spring和solon

2025-02-27

软件测试工程师基础类面试题及参考答案.doc

软件测试面试题

2025-02-27

deepseek4j (DeepSeek Java SDK)

deepseek4j 是面向 DeepSeek 推出的 Java 开发 SDK,支持 DeepSeek R1 和 V3 全系列模型。提供对话推理、函数调用、JSON结构化输出、以及基于 OpenAI 兼容 API 协议的嵌入向量生成能力。通过 Spring Boot Starter 模块,开发者可以快速为 Spring Boot 2.x/3.x 以及 Solon 等主流 Java Web 框架集成 AI 能力,提供开箱即用的配置体系、自动装配的客户端实例,以及便捷的流式响应支持。 特性 完整的 DeepSeek API 支持,支持返回思维链和会话账单 支持 WebSearch 联网搜索 支持自定义连接参数、代理配置、超时设置、请求响应日志 Reactor 响应式支持,简化流式返回开发

2025-02-26

G6图可视化引擎 v5.0.43

G6 是一个图可视化引擎。它提供了图的绘制、布局、分析、交互、动画等图可视化的基础能力。旨在让关系变得透明,简单。让用户获得关系数据的 Insight。基于 G6,用户可以快速搭建自己的 图分析 或 图编辑 应用。

2025-02-26

PikaPython跨平台的超轻量级嵌入式 Python 引擎

python

2025-02-26

Bootstrap Blazor 组件库 Bootstrap Blazor 是一套基于 Bootstrap 和 Blazor 的企业级组件库

项目介绍 Blazor 是一个使用 .NET 生成交互式客户端 Web UI 的框架: 使用 C# 代替 JavaScript 来创建丰富的交互式 UI。 共享使用 .NET 编写的服务器端和客户端应用逻辑。 将 UI 呈现为 HTML 和 CSS,以支持众多浏览器,其中包括移动浏览器。 使用 .NET 进行客户端 Web 开发可提供以下优势: 使用 C# 代替 JavaScript 来编写代码。 利用现有的 .NET 库生态系统。 在服务器和客户端之间共享应用逻辑。 受益于 .NET 的性能、可靠性和安全性。 始终高效支持 Windows、Linux 和 macOS 上的 Visual Studio。 支持 Net5 以一组稳定、功能丰富且易用的通用语言、框架和工具为基础来进行生成。 本项目是利用 Bootstrap 样式进行封装的 UI 组件库

2025-02-16

Dify 是一个易用的 LLMOps 平台,旨在让更多人可以创建可持续运营的原生 AI 应用

系统要求 在安装 Dify 之前,请确保您的机器满足以下最低系统要求: CPU >= 2 Core RAM >= 4 GiB 快速启动 启动 Dify 服务器的最简单方法是运行我们的 docker-compose.yml 文件。在运行安装命令之前,请确保您的机器上安装了 Docker 和 Docker Compose: cd docker cp .env.example .env docker compose up -d 运行后,可以在浏览器上访问 http://localhost/install 进入 Dify 控制台并开始初始化安装操作。 自定义配置 如果您需要自定义配置,请参考 .env.example 文件中的注释,并更新 .env 文件中对应的值。此外,您可能需要根据您的具体部署环境和需求对 docker-compose.yaml 文件本身进行调整,例如更改镜像版本、端口映射或卷挂载。完成任何更改后,请重新运行 docker-compose up -d。您可以在此处找到可用环境变量的完整列表。

2025-02-16

基于 Vue3 + Typescript 的低代码页面可视化设计器 内置低代码引擎、渲染器和代码生成器,面向前端开发者,开箱即用 无缝嵌入本地开发工程,不改变前端开发流程和编码习惯

特性 流行的技术栈: Vue3、Typescript、Vite、EelementPlus、VueUse、Axios、ECharts、Lodash、Monaco Editor、Prettier 等。 自由个性化: 低代码设计器支持源码级别的自定义,可轻松适配个性化需求,理论上写代码开发能实现的在设计器上都能完成。 低学习成本: 专为前端开发者设计,无需改变您熟悉的前端开发流程和编码习惯。只需了解Vue,即可轻松上手,实现无缝对接,真正做到零学习成本。 高扩展性: 配备了先进的内置低代码引擎,通过配置化构建方式,赋予您对所有部件的完全自定义能力。您可以单独运用此引擎,自主打造专属的低代码平台。 无污染,可二开: 设计器无缝嵌入本地项目开发环境,既安全又便捷,轻松接入。同时,采用创新的设计器和渲染器分离模式,确保项目代码保持纯净,不受任何污染,并且产物支持二次开发。 物料丰富: 此外,还内置了多款常用、功能强大的组件库以及丰富的页面模板,不仅支持高度定制,还提供了可复用的区块组件,助您高效构建出色的应用。

2025-02-16

基于Spring Boot 3.4、 Spring Cloud 2024 & Alibaba、 SAS OAuth2 的微服务RBAC 权限管理系统

系统说明 基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台, 同时支持微服务架构和单体架构 提供对 Spring Authorization Server 生产级实践,支持多种安全授权模式 提供对常见容器化方案支持 Kubernetes、Rancher2 、Kubesphere、EDAS、SAE 支持 分支说明 jdk17: java17/21 + springboot 3.4 + springcloud 2024 master: java8 + springboot 2.7 + springcloud 2021

2025-01-20

比libevent/libuv/asio更易用的国产网络库,用来开发 TCP/UDP/SSL/HTTP/WebSocket/MQTT 客户端/服务端

跨平台(Linux, Windows, macOS, Android, iOS, BSD, Solaris) 高性能事件循环(网络IO事件、定时器事件、空闲事件、自定义事件、信号) TCP/UDP服务端/客户端/代理 TCP支持心跳、重连、转发、多线程安全write和close等特性 内置常见的拆包模式(固定包长、分界符、头部长度字段) 可靠UDP支持: WITH_KCP SSL/TLS加密通信(可选WITH_OPENSSL、WITH_GNUTLS、WITH_MBEDTLS) HTTP服务端/客户端(支持https http1/x http2 grpc) HTTP支持静态文件服务、目录服务、正向/反向代理服务、同步/异步API处理器 HTTP支持RESTful风格、路由、中间件、keep-alive长连接、chunked分块、SSE等特性 WebSocket服务端/客户端 MQTT客户端

2025-01-09

SCServoSDK飞特总线舵机接口库

SMServoBCL_keil_f405_hal_220330.7z 1、stm32f405 keil hal sdk增加同步读功能 2、stm32f405 keil hal sdk增加总线切换延时 SMServoBCL_keil_f103_220329.7z 1、stm32f103 keil sdk增加同步读功能 2、stm32f103 keil sdk增加总线切换延时 SMServoBCL_keil_f405_220329.7z 1、stm32f405 keil sdk增加同步读功能 2、stm32f405 keil sdk增加总线切换延时 3、SDK读超时使用指令计数方法替换系统定时器(不占用系统定时器)

2024-12-30

AT24CXX 软件包提供了at24cxx 系列 EEPROM 基本功能 本文介绍该软件包的基本读写功能,以及 Finsh/MSH 测试命令等

AT24CXX 软件包提供了at24cxx 系列 EEPROM 基本功能。本文介绍该软件包的基本读写功能,以及 Finsh/MSH 测试命令等。 目前已在 at24c02, at24c512验证通过

2024-12-30

Luat-Lua-Air724U LuatOS-Air

本项目是基于合宙Cat1模块的Lua语言开发环境、开发简单快速、上手方便、无需学习复杂的语法。相较于传统MCU+蜂窝模组开发方式,有如下优势: 1,替代MCU+蜂窝模组的架构,只需要蜂窝模组, 并最大限度发挥蜂窝模组的各项功能; 2,相较于普通MCU,模组自带的处理器性能更强,外设更丰富; 3,功能完善:支持常见通信协议、云平台接入、常用外设和传感器、FOTA等常用功能; 4,丰富例程,完善的注释和文章指导,开发更加容易上手; 5,Lua脚本更加高效,无需编译直接运行,提高开发效率; 6,无需处理复杂AT逻辑,Lua API接口更符合程序开发思维。

2024-12-30

Altium Designer集成库带3D封装,发展自嘉立创SMT元器件库

本自用集成库发展自 嘉立创SMT样品贴片中可贴片元器件列表_基础库,适用于Altium,元器件大部分有3D模型

2024-12-30

专为MCU项目开发提速的代码框架

BabyOS适用于MCU项目,她是一套管理功能模块和外设驱动的框架。 对项目而言,缩短开发周期。项目开发时选择适用的功能模块及驱动。直接进入功能代码编写的阶段。 对开发而言,减少重复工作。调试过的功能模块和驱动代码放入BabyOS中管理,以后项目可以直接使用。

2024-12-30

OpenCV-Studio OpenCV工作室

项目说明 专注于OpenCV功能的可视化操作,包含大多数OpenCV的常用功能; 开发目的: 1、探索OpenCV常用图像算法; 2、探索深度学习模型OnnxRuntime部署; 3、探索WPF Canvas及其与图像算法的结合应用; 4、探索MahApps.Metro的各种控件应用; 5、封装使用较为复杂的OpenCV算法; 6、方便算法开发人员测试调试算法;

2024-12-30

Oui一个用于开发 OpenWrt Web 接口的框架

Oui 是一个用来开发 OpenWrt Web 接口的框架。 Oui 使用 Lua-eco 开发其静态文件服务器。 Oui 前端使用 Vue3 编写,使用 Vite 构建前端代码。 不同于传统的前端项目,所有的页面作为一个整体进行打包。Oui 实现了和 Luci 一样的模块化,每个页面独立打包,互不影响。其处理方式为将每个页面以库的形式进行打包。

2024-12-30

采用EDA硬件辅助验证行业先进的非实时信号跟踪技术,用户无需在源码/网表级别植入任何探针(Probe),就能在FPGA调试过程中,获得100%信号可见性

代码是设计出来的,也是调试出来的。如果调试不直观,那么即使有可见性,也无法知道看到的是什么。 对于FPGA调试,一直以来工程师普遍抱怨,可见性非常差,但可见性、可观测能力,或者说能够获取尽可能多的数据,是做出正确决策的第一步。 FPGA芯片作为价格亲民的"ASIC",两者共享一样的设计开发流程,把代表FPGA最先进调试能力的EDA硬件辅助验证技术,服务日常的FPGA应用开发。

2024-12-30

可通信状态机(CSM)

可通信状态机(CSM)是一个基于JKI状态机(JKISM)的LabVIEW应用框架。它遵循 JKISM 的模式,扩展了关键词以描述模块之间的消息通信,包括同步消息、异步消息、状态订阅/取消订阅等概念

2024-12-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除