- 博客(4)
- 收藏
- 关注
原创 ResUNet原理与实现
U-Net的下采样和上采样的设计与许多现在成熟的网络结构异曲同工。因为ImageNet是一个大规模的图像分类数据集,ImageNet预训练权重可以帮助我们在U-Net的训练中使用更好的初始化权重,加快网络的收敛速度并提高网络的泛化能力。但是,U-Net的下采样和上采样的设计思路和现在许多成熟的网络结构相似,因此,可以看作是先驱性的工作。整个网络结构包括了ResNet的残差连接和U-Net的上下采样和跳跃连接思想,可以更好地平衡特征的丰富性和细节的保留性,在图像分割任务中表现出较好的性能。
2023-03-13 01:29:01 17054
原创 图像分割算法U-net
UNet是一种用于图像分割任务的深度学习模型,最初由Olaf Ronneberger等人在2015年提出。它的名字来源于其U形状的网络结构。UNet的主要特点是它使用了编码器和解码器结构,其中编码器部分由一系列卷积层和池化层组成,可以对输入图像进行特征提取和压缩。解码器部分则通过上采样和反卷积层将编码器输出的低分辨率特征映射扩展回原始分辨率,从而获得分割结果。
2023-03-13 00:24:29 3586
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人