JVM学习笔记Ⅲ


08 堆

堆的核心概述

一个java程序运行起来,就有一个进程,一个进程有一个JVM实例,一个JVM实例对应一个Runtime类,对应一个方法区和一个堆。
一个进程有多个线程,多个线程共享方法区和堆。

  • 一个JVM实例只存在一个堆内存,堆也是Java内存管理的核心区域。
  • Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。(堆内存的大小是可以调节的)
  • 《Java虚拟机规范》规定,堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的。
  • 所有的线程共享Java堆,在这里还可以划分线程私有的缓冲区(Thread Local Allocation Buffer,TLAB)。
  • 《Java虚拟机规范》中对Java堆的描述是:所有的对象实例以及数组都应当在运行时分配在堆上。(The heap is the run-time data area from which memory for all class instances and arrays is allocated )几乎所有的对象实例都在这里分配内存。
  • 数组和对象可能永远不会存储在栈上,因为栈帧中保存引用,这个引用指向对象或数组在堆中的位置。
  • 在方法结束后,堆中的对象不会马上被移除,仅仅在垃圾收集的时候才会被移除
  • 堆,是GC(Garbage Collection,垃圾收集器)执行垃圾回收的重点区域。

引用地址,实体

package com.ming.java;

/**
 * @Author: mei_ming
 * @DateTime: 2022/10/29 17:14
 * @Description: TODO
 */
public class SimpleHeap {
    private int id;

    public SimpleHeap(int id){
        this.id=id;
    }

    public void show(){
        System.out.println("My ID is "+id);
    }

    public static void main(String[] args) {
        SimpleHeap s1 = new SimpleHeap(10);
        SimpleHeap s2 = new SimpleHeap(10);

        int[] arr = new int[10];

        Object[] arr1= new Object[10];
    }
}

内存细分:
现代垃圾收集器大部分都基于分代收集理论设计,堆空间细分为:
Java7及之前堆内存逻辑上分为三部分:新生区+养老区+永久区
- Young Generation Space 新生区
- Tenure Generation Space 养老区
- Permanent Space 永久区
Java 8及之后堆内存逻辑上分为三部分:新生区+养老区+元空间
- Young Generation Space 新生区
- Tenure Generation Space 养老区
- Meta Space 元空间

-XX:+PrintGCDetails:打印堆内存细节
JDK1.8堆内存细节

元空间,在jdk1.7及之前叫做永久区。

设置堆内存的大小与OOM

  • Java堆区用于存储Java对象实例,那么堆的大小在JVM启动时就已经设定好了,大家可以通过选项’-Xmx’和’-Xms’来进行设置。

    • -Xms 用于表示堆区的起始内存,等价于-XX:InitialHeapSize
    • -Xmx 用于表示堆区的最大内存,等价于-XX:MaxHeapSize
  • 一旦堆区中的内存大小超过’-Xmx’所指定的最大内存时,将会抛出OutOfMemeryError异常。

  • 通常会将 -Xms和-Xmx两个参数配置相同的值,其目的是为了能够在java垃圾回收机制清理完堆区后不需要重新分隔计算堆区的大小,从而提高性能。

  • 默认情况下,初始内存大小:物理电脑内存大小/64,最大内存大小:物理电脑内存大小/4;

代码演示:

package com.ming.java;

/**
 * @Author: mei_ming
 * @DateTime: 2022/10/29 23:14
 * @Description: 查看堆信息
 *
 * 1. 设置堆空间大小的参数
 *  -Xms 用来设置堆空间(年轻代+老年代)的初始内存大小
 *     -X 是jvm的运行参数
 *     ms 是memory start
 *  -Xmx 用来设置堆空间(年轻代+老年代)的最大内存大小
 *
 * 2. 默认堆空间的大小
 *  初始内存大小:物理电脑内存大小 / 64
 *  最大内存大小:物理电脑内存大小 / 4
 *
 * 3. 手动设置: -Xms20m -Xmx20m
 *  开发中建议将初始堆内存和最大的堆内存设置成相同的值。
 *
 * 4. 查看设置的参数: 方式1: jps / jstat -gc 进程id
 *                 方式2: -XX:+PrintGCDetails
 *
 */
public class HeapSpaceTest {
    public static void main(String[] args) {
        //返回Java虚拟机中的堆内存总量
        long initialMemory = Runtime.getRuntime().totalMemory() / 1024 / 1024;
        //返回Java虚拟机试图使用的最大堆内存量
        long maxMemory = Runtime.getRuntime().maxMemory() / 1024 / 1024;

        System.out.println("-Xms : " + initialMemory + "M");
        System.out.println("-Xmx : " + maxMemory + "M");

//        System.out.println("系统内存大小为:" + initialMemory * 64.0 / 1024 + "G");
//        System.out.println("系统内存大小为:" + maxMemory * 4.0 / 1024 + "G");
        /**
         * 没设大小默认为
         * -Xms : 61M
         * -Xmx : 885M
         * 系统内存大小为:3.8125G
         * 系统内存大小为:3.45703125G
         *
         * 设置大小 -Xms20m -Xmx20m
         * -Xms : 19M
         * -Xmx : 19M
         * 系统内存大小为:1.1875G
         * 系统内存大小为:0.07421875G
         */

//        try {
//            Thread.sleep(3000000);
//        } catch (InterruptedException e) {
//            e.printStackTrace();
//        }
    }
}

方式1:
cmd
设置-Xms20m = (512+512+5632+13824)/1024=20M
打印实际值为 19m = (512+5632+13824)/1024 =19.5M

方式2:
运行结果
与上述方式1一致。

OOM举例:

package com.ming.java;

import java.util.ArrayList;
import java.util.Random;

/**
 * @Author: mei_ming
 * @DateTime: 2022/10/30 12:42
 * @Description: OutOfMemoryError 演示
 */
public class OOMTest {
    public static void main(String[] args) {
        ArrayList<Picture> pictures = new ArrayList<>();
        while(true){
            try {
                Thread.sleep(20);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            pictures.add(new Picture(new Random().nextInt(1024*1024)));
        }
        /**
         * Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
         * 	at com.ming.java.Picture.<init>(OOMTest.java:28)
         * 	at com.ming.java.OOMTest.main(OOMTest.java:20)
         */
    }
}
class Picture{
    private byte[] pixels;

    public Picture(int length){
        this.pixels=new byte[length];
    }
}

年轻代与老年代

  • 存储在JVM中的Java对象可以被划分为两类:

    • 一类是生命周期较短的瞬时对象,这类对象的创建和消亡都非常迅速。
    • 另一类对象的生命周期非常长,在某些极端的情况下,还能够与JVM的生命周期保持一致
  • Java堆区进一步细分的话,可以划分为年轻代(YoungGen)和老年代(OldGen)

  • 其中年轻代又可以划分为Eden空间,Survivor0空间,Survivor1空间(有时也叫做from区和to区)
    分区
    配置新生代与老年代在堆结构的占比:
    堆

  • 默认 -XX:NewRatio=2,表示新生代占1,老年代占2,新生代占整个堆的1/3

  • 可以修改-XX:NewRatio=4,表示新生代占1,老年代占4,新生代占整个堆的1/5

  • 在HotSpot中,Eden空间和另外两个Survivor空间缺省所占的比例是8:1:1

  • 可以通过选项-XX:SurvivorRatio调整这个空间比例。比如 -XX:SurvivorRatio=8

  • 几乎所有的Java对象都是在Eden区被new出来的。

  • 绝大部分的Java对象的销毁都在新生代进行。

  • 可以使用选项-Xmn设置新生代最大内存大小

代码说明:

package com.ming.java1;

/**
 * @Author: mei_ming
 * @DateTime: 2022/10/30 15:21
 * @Description: 查看堆内存(新生代、老年代)的占比
 * -Xms500m -Xmx500m
 *
 * -XX:NewRatio:设置新生代与老年代的比例,默认值是2
 * -XX:SurvivorRatio: 设置新生代中Eden区与Survivor区的比例,
 *                    实际是6:1:1,默认是8:1:1
 * -XX:-UseAdaptiveSizePolicy :关闭自适应的内存分配策略(暂时用不到)
 *
 * -Xmn:设置新生代的空间的大小
 */
public class EdenSurvivorTest {
    public static void main(String[] args) {
        System.out.println("查看新生代老年代的比例");

        try {
            Thread.sleep(1000000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

默认情况:
cmd
visual VM
设置:-XX:NewRatio=3
新生代与老年代比例
设置:-XX:SurvivorRatio=8
Eden区与Survivor区比例实际中是6:1:1,需要显示的设置才为8:1:1
Eden区和Survivor区比例

图解对象分配过程

为新对象分配内存是一件非常严谨和复杂的任务,JVM的设计者们不仅需要考虑内存如何分配、在哪里分配等问题,并且由于内存分配算法与回收算法密切相关,所以还需要考虑GC执行完内存回收后是否会在内存空间中产生内存碎片。

  1. new的对象先放在伊甸园区。此区有大小限制。
  2. 当伊甸园的空间填满时,程序又需要创建对象,JVM的垃圾回收器将会对伊甸园区进行垃圾回收(Minor GC),将伊甸园区中的不再被其他对象所引用的对象进行销毁。再加载新的对象放到伊甸园区。
  3. 然后将伊甸园区中剩余对象移动到幸存者0区。
  4. 如果再次触发垃圾回收,此时上次幸存下来的放到幸存者0区,如果没有回收,就会放到幸存者1区。
  5. 如果再次经历垃圾回收,此时会重新放回幸存者0区,接着再去幸存者1区。
  6. 啥时候能去养老区,可以设置次数,默认是15次。
    • 可以设置参数:-XX:MaxTenuringThreshold=<N>进行设置
  7. 在养老区,相对悠闲。当养老区内存不足时,再次触发GC:(Major GC),进行养老区的内存清理。
  8. 若养老区执行了Major GC之后,发现依然无法进行对象的保护,就会产生OOM异常。

流程图
总结:

  • 针对幸存者s0,s1区:复制之后有交换,谁空谁是to
  • 关于垃圾回收:频繁在新生区收集,很少在养老区收集,几乎不在永久区/元空间收集。

流程图2

Minor GC、Major GC、Full GC

JVM 在进行GC时,并非每次都对上面三个内存(新生代、老年代;方法区)区域一起回收的,大部分时候回收的都是指新生代。
针对HotSpot VM的实现,它里面的GC按照回收区域又分为两大种类型,一种是部分收集(Partial GC),一种是整堆收集(Full GC)

  • 部分收集:不是完整收集整个Java堆的垃圾收集。其中又分为:
    • 新生代收集(Minor GC/Young GC):只是在**新生代(Eden\s0,s1)**的垃圾收集
    • 老年代收集(Major GC/Old GC):只是老年代的垃圾收集。
      • 目前,很多时候Major GC会和Full GC混淆使用,需要具体分辨是老年代回收还是整堆回收。
    • 混合收集(Mixed GC):收集整个新生代以及部分老年代的垃圾收集。
      • 目前,只有G1 GC会有这种行为
  • 整堆收集(Full GC):收集整个java堆和方法区的垃圾收集。

**年轻代GC(Minor GC)**触发机制:

  • 当年轻代空间不足时,就会触发Minor GC,这里的年轻代满指的是Eden代满,Survivor满不会引发GC。(每次Minor GC会清理年轻代的内存。)
  • 因为Java对象大多都是具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快,这一定义既清晰又易于理解。
  • Minor GC会引发STW,暂停其他用户的线程,等垃圾回收结束,用户线程才恢复运行。

流程

**老年代GC(Major GC/Full GC)**触发机制:

  • 指发生在老年代的GC,对象从老年代消失时,我们说“Major GC”或“Full GC”发生了。
  • 出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里,就有直接进行Major GC的策略选择过程)
    • 也就是在老年代空间不足时,会先尝试触发Minor GC。如果之后空间还不足,则触发Major GC
  • Major GC的速度一般会比Minor GC慢10倍以上,STW的时间更长。
  • 如果Major GC后,内存还不足,就报OOM

Full GC的触发机制:
触发Full GC执行的情况有如下五种:

  1. 调用System.gc()时,系统建议执行Full GC,但是不必然执行
  2. 老年代空间不足
  3. 方法区空间不足
  4. 通过Minor GC后,进入老年代的平均大小大于老年代的可用内存
  5. 由Eden区,survivor space0(From)区向survivor space1(To)区复制时,对象大小大于To区可用内存,则把该对象转存到老年代,且老年代的可用内存小于该对象大小

说明:full gc是开发或调优中尽量避免的。这样暂停时间会短一些(STW)

package com.ming.java1;

import java.util.ArrayList;
import java.util.List;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/1 21:18
 * @Description: 测试Minor GC,Major GC,Full GC
 *
 * -Xms9m -Xmx9m -XX:+PrintGCDetails
 */
public class GCTest {
    public static void main(String[] args) {
        int i=0;
        try {
            List<String> list= new ArrayList<>();
            String s="mem";
            while(true){
                list.add(s);
                s=s+s;
                i++;
            }
        } catch (Throwable t) {
            t.printStackTrace();
            System.out.println("遍历次数为:"+i);
        }
        /**
         * [GC (Allocation Failure) [PSYoungGen: 2027K->496K(2560K)] 2027K->728K(9728K), 0.0038166 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
         * [GC (Allocation Failure) [PSYoungGen: 2333K->496K(2560K)] 2565K->1480K(9728K), 0.0009526 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
         * [GC (Allocation Failure) [PSYoungGen: 2454K->488K(2560K)] 3438K->2280K(9728K), 0.0008848 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
         * [Full GC (Ergonomics) [PSYoungGen: 1295K->0K(2560K)] [ParOldGen: 6400K->5278K(7168K)] 7695K->5278K(9728K), [Metaspace: 3442K->3442K(1056768K)], 0.0041265 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
         * [GC (Allocation Failure) [PSYoungGen: 0K->0K(2560K)] 5278K->5278K(9728K), 0.0003275 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
         * [Full GC (Allocation Failure) [PSYoungGen: 0K->0K(2560K)] [ParOldGen: 5278K->5237K(7168K)] 5278K->5237K(9728K), [Metaspace: 3442K->3442K(1056768K)], 0.0054518 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 
         * 遍历次数为:18
         * Heap
         *  PSYoungGen      total 2560K, used 162K [0x00000000ffd00000, 0x0000000100000000, 0x0000000100000000)
         *   eden space 2048K, 7% used [0x00000000ffd00000,0x00000000ffd28a38,0x00000000fff00000)
         *   from space 512K, 0% used [0x00000000fff80000,0x00000000fff80000,0x0000000100000000)
         *   to   space 512K, 0% used [0x00000000fff00000,0x00000000fff00000,0x00000000fff80000)
         *  ParOldGen       total 7168K, used 5237K [0x00000000ff600000, 0x00000000ffd00000, 0x00000000ffd00000)
         *   object space 7168K, 73% used [0x00000000ff600000,0x00000000ffb1d670,0x00000000ffd00000)
         *  Metaspace       used 3475K, capacity 4496K, committed 4864K, reserved 1056768K
         *   class space    used 379K, capacity 388K, committed 512K, reserved 1048576K
         * 
         * java.lang.OutOfMemoryError: Java heap space
         */
    }
}

堆空间的分代思想

为什么需要把Java堆分代,不分代可以吗?
其实不分代完全可以,分代的唯一理由就是优化GC性能,如果没有分代,那所有的对象都在一块,GC的时候要找到哪些对象没用,这样就会对堆的所有区域进行扫描。而很多对象都是朝生夕死的,如果分代的话,把新创建的对象放到某一个地方,当GC的时候,先把这块存储“朝生夕死”对象的区域进行回收,这样就会腾出很大的空间出来。

内存分配策略 *

如果对象在Eden 出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并将对象年龄设为1。对象在Survivor区中每熬过一次MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,其实每个JVM,每个GC都有所不同)时,就会晋升到老年代中。
对象晋升老年代的年龄阈值,可以通过选项-XX:MaxTenuringThreshold来设置

对象晋升规则:
针对不同年龄段的对象分配原则如下所示:

  • 优先分配到Eden
  • 大对象直接分配到老年代
    • 尽量避免程序中出现过多的大对象
  • 长期存活的对象分配到老年代
  • 动态对象年龄判断:
    • 如果Survivor 区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代,无须等到MaxTenuringThreshold 中要求的年龄
  • 空间分配担保:
    • -XX:HandlePromotionFailure
package com.ming.java1;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/1 21:59
 * @Description: 测试,大对象直接进入老年代
 * -Xms60m -Xmx60m -XX:NewRatio=2 -XX:SurvivorRatio=8 -XX:+PrintGCDetails
 */
public class YoungOldAreaTest {
    public static void main(String[] args) {
        byte[] buf= new byte[1024*1024*20];
    }
    /**
     * Heap
     *  PSYoungGen      total 18432K, used 2309K [0x00000000fec00000, 0x0000000100000000, 0x0000000100000000)
     *   eden space 16384K, 14% used [0x00000000fec00000,0x00000000fee417e0,0x00000000ffc00000)
     *   from space 2048K, 0% used [0x00000000ffe00000,0x00000000ffe00000,0x0000000100000000)
     *   to   space 2048K, 0% used [0x00000000ffc00000,0x00000000ffc00000,0x00000000ffe00000)
     *  ParOldGen       total 40960K, used 20480K [0x00000000fc400000, 0x00000000fec00000, 0x00000000fec00000)
     *   object space 40960K, 50% used [0x00000000fc400000,0x00000000fd800010,0x00000000fec00000)
     *  Metaspace       used 3446K, capacity 4496K, committed 4864K, reserved 1056768K
     *   class space    used 376K, capacity 388K, committed 512K, reserved 1048576K
     *
     * 由上ParOldGen 中 used 20480K 可知,20m的数组储存在老年代中
     */
}

为对象分配内存:TLAB

为什么有TLAB(Thread Local Allocation Buffer)?

  • 堆区时线程共享区域,任何线程都可以访问到堆区中的共享数据
  • 由于对象实例的创建在JVM中非常频繁,因此在并发环境下从堆区中划分内存空间是线程不安全的。
  • 为了避免多个线程操作同一地址,需要使用加锁等机制,进而影响分配速度。

什么是TLAB

  • 从内存模型而不是垃圾收集的角度,对Eden区域继续进行划分,JVM为每个线程分配了一个私有缓存区域,它包含在Eden空间内。
  • 多线程同时分配内存时,使用TLAB可以避免一系列的非线程安全问题,同时还能够提升内存分配的吞吐量,因此我们可以将这种内存分配方式称之为快速分配策略
  • 所有OpenJDK衍生出来的JVM都提供了TLAB的设计

TLAB的再说明:

  • 尽管不是所有的对象实例都能够再TLAB中成功分配内存,但JVM确实是将TLAB作为内存分配的首选。
  • 在程序中,我们可以通过选项:-XX:UseTLAB 设置是否开启TLAB空间
  • 默认情况下,TLAB空间的内存非常小,仅占有整个Eden区的1%,当然我们可以通过选项:-XX:TLABWasteTargetPercent设置TLAB空间所占用Eden空间的百分比大小
  • 一旦对象在TLAB空间分配内存失败时,JVM就会尝试通过使用加锁机制确保数据操作的原子性,从而直接在Eden空间中分配内存
    TLAB的分配
    代码说明:
package com.ming.java1;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/2 20:10
 * @Description: TLAB 默认开启
 * 1. jps
 * 2. jinfo -flag UserTLAB 进程id
 */
public class TLABArgsTest {
    public static void main(String[] args) {
        System.out.println("TLABArgsTest start...");
        try {
            Thread.sleep(6000000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

查看TLAB是否开启

小结 堆空间的参数设置

官网

  • -XX:+PrintFlagsInitial:查看所有的参数的默认初始值
  • -XX:+PrintFlagsFinal:查看所有的参数的最终值(可能会存在修改,不再是初始值)
  • -Xms:初始堆空间内存(默认为物理内存的1/64)
  • -Xmx:最大堆空间内存(默认为物理内存的1/4)
  • -Xmn:设置新生代的大小(初始值及最大值)
  • -XX:NewRatio:配置新生代与老年代在堆结构的占比
  • -XX:SurvivorRatio:设置新生代中Eden区和S0/S1空间的比例
  • -XX:MaxTenuringThreshold:设置新生代垃圾的最大年龄
  • -XX:+PrintGCDetails:输出详细的GC处理日志
    • 打印gc简要信息:① -XX:+PrintGC ② -cerbose:gc
  • -XX:HandlePromotionFailure:是否设置空间分配担保

空间分配担保:
在发生Minor GC之前,虚拟机会检查老年代最大可用的连续空间是否大于新生代所有对象的总空间

  • 如果大于,这此次Minor GC是安全的。
  • 如果小于,则虚拟机会查看-XX:HandlePromotionFailure设置值是否运行担保失败。
    • 如果HandlePromotionFailure=true,那么会继续检查老年代最大可用连续空间是否大于历次晋升到老年代的对象的平均大小
      • 如果大于,则尝试进行一次Minor GC ,但这次的Minor GC依然有风险的。
      • 如果小于,则改为进行一次Full GC。
    • 如果HandlePromotionFailure=false,则改为进行一次Full GC
      在JDK7后,HandlePromotionFailure参数不会再影响到虚拟机的空间分配担保策略(失效,默认看作true),观察OpenJDK中源码的变化,虽然源码中还定义了HandlePromotionFailure参数,但是在代码中已经不会再使用它。规则变为只要老年代的连续空间大于新生代对象总大小或者历次晋升的平均大小就会就会进行Minor GC,否则将进行Full GC
package com.ming.java1;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/2 20:31
 * @Description: 测试堆空间常用的jvm参数
 *
 * -XX:+PrintFlagsInitial:查看所有的参数的默认初始值
 * -XX:+PrintFlagsFinal:查看所有的参数的最终值(可能会存在修改,不再是初始值)
 *          具体查看某个参数的指令: jps : 查看当前运行中的进程
 *                              jinfo -flag SurvivorRatio 进程id
 * -Xms:初始堆空间内存(默认为物理内存的1/64)
 * -Xmx:最大堆空间内存(默认为物理内存的1/4)
 * -Xmn:设置新生代的大小(初始值及最大值)
 * -XX:NewRatio:配置新生代与老年代在堆结构的占比
 * -XX:SurvivorRatio:设置新生代中Eden区和S0/S1空间的比例
 * -XX:MaxTenuringThreshold:设置新生代垃圾的最大年龄
 * -XX:+PrintGCDetails:输出详细的GC处理日志
 *          打印gc简要信息:① -XX:+PrintGC ② -cerbose:gc
 * -XX:HandlePromotionFailure:是否设置空间分配担保
 */
public class HeapArgsTest {
    public static void main(String[] args) {

    }
}

设置 VM options :-XX:+PrintFlagsFinal -XX:SurvivorRatio=5
设置 VM options
效果:
运行结果
设置 VM options :-Xms60m -Xmx60m -XX:+PrintGCDetails
VM options
效果:
效果图

堆是分配对象存储的唯一选择吗

new的对象默认是分配到堆中的。
在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:
随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么绝对了。
在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析(Escape Analysis)后,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。这也是最常见的堆外存储技术。

此外,前面提到的基于Open JDK深度定制的TaoBaoVM,其中创新的GCIH(GC invisible heap)技术实现off-heap,将生命周期较长的Java对象从heap中移至heap外,并且GC不能管理GCIH内部的Java对象,以此达到降低GC的回收频率和提升GC的回收效率的目的。

逃逸分析概述:

  • 如何将堆上的对象分配到栈,需要使用逃逸分析手段。
  • 这是一种可以有效减少Java程序中同步负载和内存堆分配压力的跨函数全局数据流分析算法。
  • 通过逃逸分析,Java Hotspot编译器能够分析出一个新的对象的引用的使用范围,从而决定是否要将这个对象分配到堆上。
  • 逃逸分析的基本行为就是分析对象动态作用域:
    • 当一个对象在方法中被定义后,对象只在方法内部使用,则认为没有发生逃逸。
    • 当一个对象在方法中被定义后,他被外部方法所引用,则认为发生逃逸。例如作为调用参数传递到其他地方中。
public void my_method(){
	V v = new V();
	//use v
	//....
	v=null;
}

上述代码中没有发生逃逸的对象,则可以分配到栈中,随着方法执行的结束,栈空间就被移除。

public static StringBuffer createStringBuffer(String s1,String s2){
	StringBuffer sb = new StringBuffer();
	sb.append(s1);
	sb.append(s2);
	return sb
}

上述代码发生逃逸,如果想要StringBuffer sb 不逃出方法,可以这样写:

public static String createStringBuffer(String s1,String s2){
	StringBuffer sb = new StringBuffer();
	sb.append(s1);
	sb.append(s2);
	return sb.toString();
}
package com.ming.java2;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/3 21:13
 * @Description: 逃逸分析
 * 如何判断是否发生逃逸分析,就看new 的对象实体是否有可能在方法外被调用
 */
public class EscapeAnalysis {
    public EscapeAnalysis obj;

    /**
     * 方法返回EscapeAnalysis对象,发生逃逸
     * @return
     */
    public EscapeAnalysis getInstance(){
        return obj == null ? new EscapeAnalysis() : obj;
    }

    /**
     * 为成员属性赋值,发生逃逸
     */
    public void setObj(){
        this.obj=new EscapeAnalysis();
    }
    //思考,如果当前的obj引用声明为static的? 仍然会发生逃逸。

    /**
     * 对象的作用域仅在当前方法中有效,没有发生逃逸。
     */
    public void useEscapeAnalysis(){
        EscapeAnalysis e = new EscapeAnalysis();
    }
    /**
     * 医用成员变量的值,发生逃逸
     */
    public void useEscapeAnalysis1(){
        EscapeAnalysis e = getInstance();
        //new的实体是在方法外边,发生逃逸,
        //getInstance().XXX() : 同样也发生逃逸
    }
}

参数设置:

  • 在JDK 6u23版本之后,HotSpot中默认就已经开启了逃逸分析。
  • 如果使用的是较早的版本,可以通过
    • 选项-XX:+DoEscapeAnalysis显式开启逃逸分析
    • 通过选项-XX:+PrintEscapeAnalysis查看逃逸分析的筛选结果

结论

开发中能使用局部变量的,就不要使用在方法外定义

使用逃逸分析:代码优化
使用逃逸分析,编译器可以对代码做如下的优化:

  1. 栈上分配:将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配。
  2. 同步省略:如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。
  3. 分离对象或标量替换:有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中

优化代码之栈上分配

  • JIT编译器在编译期间根据逃逸分析的结果,发现如果一个对象并没有逃逸出方法的话,就可能被优化成栈上分配。分配完成后,继续在调用栈内执行,最后线程结束,栈空间被回收,局部变量对象也被回收。这样就无须进行垃圾回收了。
  • 常见的栈上分配的场景:给成员变量赋值,方法返回值,实例引用传递
package com.ming.java2;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/3 21:52
 * @Description: 测试栈上分配
 * -Xmx256m -Xms256m -XX:-DoEscapeAnalysis -XX:+PrintGCDetails
 */
public class StackAllocation {
    public static void main(String[] args) {
        long start = System.currentTimeMillis();

        for (int i = 0; i <10000000 ; i++) {
            alloc();
        }
        long end = System.currentTimeMillis();
        System.out.println("花费时间:"+(end-start)+"ms");
        // 为了方便查看堆内存中对象个数,线程sleep
        try {
            Thread.sleep(1000000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    private static void alloc(){
        User user = new User();
    }
    static class User{

    }
}
  • 未开启逃逸分析:-Xmx1G -Xms1G -XX:-DoEscapeAnalysis -XX:+PrintGCDetails,对象个数 : 10,000,000
    花费时间
    visualvm

  • 开启后:-Xmx1G -Xms1G -XX:+DoEscapeAnalysis -XX:+PrintGCDetails ,对象个数不超过10,000,000
    花费时间
    Use对象个数

  • 减少堆大小,关闭逃逸分析:-Xmx256m -Xms256m -XX:-DoEscapeAnalysis -XX:+PrintGCDetails,进行垃圾回收
    花费时间

  • 减少堆大小,开启逃逸分析:-Xmx256m -Xms256m -XX:+DoEscapeAnalysis -XX:+PrintGCDetails没有进行垃圾回收
    花费时间

优化代码之同步省略(消除):

  • 线程同步的代价是相当高的,同步的后果是降低并发性和性能。
  • 在动态编译同步块的时候,JIT编译器可以借助逃逸分析来判断同步块所使用的锁对象是否只能够被一个线程访问而没有被发布到其他线程。如果没有,那么JIT编译器在编译这个同步块的时候,就会取消对这部分代码的同步。这样就能大大提高并发性和性能。这个取消同步的过程就叫同步省略,也叫锁消除

如下代码说明:

public void f(){
	Object obj = new Object();
	synchronized(obj){
		System.out.println(obj);
	}
}

代码中对obj这个对象进行加锁,但是obj对象的生命周期只在f()方法内有效,并不会被其他线程所访问到,所以在JIT编译阶段就会被优化掉,优化成:

public void f(){
	Object obj = new Object();
	System.out.println(obj);
}

注意:
在查看字节码文件时,还能看到同步的monitorenter/monitorexit,是因为同步省略发生在运行后

代码优化之标量替换
标量(Scalar)是指一个无法再分解成更小的数据的数据。Java中的原始数据类型就是标量。
相对的,哪些还可以分配的数据叫做
聚合量(Aggregate)
,Java中的对象就是聚合量,因为可以分解为其他聚合量和标量。
在JIT阶段,如果经过逃逸分析,发现一个对象不会被外界访问的话,那么经过JIT优化,就会把这个对象拆解为其中包含的若个成员变量来代替,这个过程就是标量替换

public class ScalarAllocation {
    public static void main(String[] args) {
        alloc();
    }
    private static void alloc(){
        Point p = new Point(1,2);
        System.out.println(p.x+" "+p.y);
    }
    static class Point{
        private int x;
        private int y;
        Point(int x,int y){
            this.x=x;
            this.y=y;
        }
    }
}

上述代码进行标量替换,就会变成:

private static void alloc(){
    int x =1;
    int y=2;
    System.out.println(x+" "+y);
}

可以看到,Point这个聚合量经过逃逸分析后,发现它并没有逃逸,就被替换成两个标量了。
标量替换的好处:可以大大减少堆内存的占用

标量替换参数设置:
参数-XX:+EliminateAllocations,开启了标量替换,默认打开,允许将对象打散分配到栈上。

package com.ming.java2;

/**
 * @Author: mei_ming
 * @DateTime: 2022/11/3 22:48
 * @Description: 标量替换测试
 *
 * -Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:+EliminateAllocations
 */
public class ScalarReplace {
    public static void main(String[] args) {
        long start = System.currentTimeMillis();

        for (int i = 0; i <10000000 ; i++) {
            alloc();
        }
        long end = System.currentTimeMillis();
        System.out.println("花费时间:"+(end-start)+"ms");
        // 为了方便查看堆内存中对象个数,线程sleep
        try {
            Thread.sleep(1000000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    private static void alloc(){
        User user = new User();//未发生逃逸
        user.id=10;
        user.name="mem";
    }
    static class User{
        private int id;
        private String name;
    }
}

  • 未开启标量替换,-Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:-EliminateAllocations.
    花费时间

  • 开启标量替换:-Xmx100m -Xms100m -XX:+DoEscapeAnalysis -XX:+PrintGC -XX:+EliminateAllocations.
    花费时间
    在Server模式下,才可以启用逃逸分析。用参数 -server 开启

逃逸分析小结:

  • 关于逃逸分析的论文在1999年就已经发表了,但直到JDK1.6才有实现,而且这项技术到如今也并不是十分成熟。
  • 其根本原因就是无法保证逃逸分析的性能消耗一定高于他的消耗。虽然经过逃逸分析可以做标量替换、栈上分配、和锁消除。但是逃逸分析自身也是需要进行一系列复杂的分析,这其实也是一个相对耗时的过程。
  • 一个极端的例子,就是经过逃逸分析之后,发现没有一个对象是不逃逸的。那这个逃逸分析的过程就白白浪费掉了。
  • 虽然这项技术并不十分成熟,但是它也是及时编译器优化技术中一个十分重要的手段,
  • 注意到一些观点,认为通过逃逸分析,JVM会在栈上分配那些不会逃逸的对象,这在理论上是可行的,但是取决于JVM设计者的选择,在Oracle Hotspot JVM中并未这么做,这一点在逃逸分析相关的文档中已经说明,所以可以明确所有的对象实例都是创建在堆上。

本章小结

  • 年轻代是对象的诞生、成长、消亡的区域,一个对象在这里产生、应用,最后被垃圾回收器收集、结束生命。
  • 老年代放置长生命周期的对象,通常都是从Survivor区域筛选拷贝过来的Java对象,当然,也有特殊情况,我们知道普通的对象会被分配在TLAB上;如果对象较大,JVM会试图直接分配在Eden其他位置,如果对象太大,完全无法在新生代找到足够长的连续空闲空间,JVM就会直接分配到老年代。
  • 当GC只发生在年轻代中,回收年轻代对象的行为被称为MinorGC,当GC发生老年代时,则被称为MajorGC或FullGC。一般的,MinorGC的发生频率要比MajorGC高很多,即老年代中垃圾回收发生的频率将大大低于年轻代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值