【机器学习】机器学习系统设计 以线性回归为例

之前写过一个【机器学习】机器学习系统设计理论性的内容,这节使用线性回归的例子来看看如何优化一个机器学习模型,也就是机器学习中的偏差和方差问题。
视频讲解:

彻底搞定机器学习算法理论与实战——机器学习的建议和系统设计

视频链接:https://www.bilibili.com/video/av97019199/

实验环境:win10 jupyter

1 读取数据并查看

import numpy as np
from scipy.io import loadmat
import scipy.optimize as opt
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
data = loadmat('ex5data1.mat')  # 读取数据放入字典中
data.keys()  # 查看有哪些数据
"""
dict_keys(['__header__', '__version__', '__globals__', 'X', 'y', 'Xtest', 'ytest', 'Xval', 'yval'])
"""

书写一个加载数据的函数

def load_data():
    """ 获取数据,并进行预处理
    d['X'] shape = (12, 1)
    """
    d = loadmat('ex5data1.mat')
    # 使用内建函数将所有的数据进行压缩成一个行向量并返回
    return  map(np.ravel, [d['X'], d['y'], d['Xval'], d['yval'], d['Xtest'], d['ytest']])

获取实验数据

X, y, Xval, yval, Xtest, ytest = load_data()

绘图查看训练数据

# 绘图查看数据
plt.scatter(X, y)
plt.xlabel('water_level')
plt.ylabel('flow')

实验数据
数据预处理

# 对数据进行预处理,即加入偏置特征
X, Xval, Xtest = [np.insert(x.reshape(x.shape[0], 1), 0, np.ones(x.shape[0]), axis=1) for x in (X, Xval, Xtest)]

2 构建损失函数

常规损失

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2

正则化损失

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 1 n θ j 2 J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2} J(θ)=2m1i=1m(hθ(x(i))y(i))2+2mλj=1nθj2

def cost(theta, X, y):
    """ 损失函数
    args
    ----------
    theta: 一个行向量(n,)
        模型参数
    X: 特征数据(m,n)
        m:为特征数据条数,n为包含偏置特征的总个数 
    y: 一个列向量(1,m)
    return: 常规损失 scalar
    """
    m = X.shape[0]   # 获取特征数据集个数

    inner = X @ theta - y  # 计算误差,返回(m,1)
    square_sum = inner.T @ inner   # np.power(inser, 2).sum()
    cost = square_sum / (2 * m)    # 计算各个数据损失值之和

    return cost

def regularized_cost(theta, X, y, l=1):
    """ 正则化损失函数
    args
    ----------
    theta: 一个行向量(n,)
        模型参数
    X: 特征数据(m,n)
        m:为特征数据条数,n为包含偏置特征的总个数 
    y: 一个列向量(1,m)
    l: lambda 正则化参数,默认为1
    return: 正则化损失 scalar
    """
    m = X.shape[0]  # 获取特征数据集个数
    # 计算正则化部分的损失
    regularized_term = (l / (2 * m)) * np.power(theta[1:], 2).sum()

    return cost(theta, X, y) + regularized_term

查看损失值

theta = np.ones(X.shape[1])   # 初始化参数theta
cost(theta, X, y),  regularized_cost(theta, X, y)  # 查看损失值,初始theta都为0,结果相同
"""
(303.9515255535976, 303.9931922202643)
"""

3 构建梯度函数

常规梯度

∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x i ) − y i ) x ( j ) \frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m}\sum_{i=1}^m\left(h_\theta(x_i) - y_i\right)x^{(j)} θjJ(θ)=m1i=1m(hθ(xi)yi)x(j)

def gradient(theta, X, y):
    """梯度计算函数
    args
    ----------
    theta: 一个行向量(n,)
        模型参数
    X: 特征数据(m,n)
        m:为特征数据条数,n为包含偏置特征的总个数 
    y: 一个列向量(1,m)
    """
    m = X.shape[0]  # 获取特征数据集个数
    # 计算各数据的梯度
    inner = X.T @ (X @ theta - y)  # (m,n).T @ (m, 1) -> (n, 1)
    # 返回参数的平均梯度
    return inner / m
gradient(theta, X, y)         # 无正则项初始化梯度
"""
array([-15.30301567, 598.16741084])
"""

正则化梯度

∂ J ( θ ) ∂ θ 0 = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i )  for  j = 0 ∂ J ( θ ) ∂ θ j = ( 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) ) + λ m θ j  for  j ≥ 1 \begin{aligned} \frac{\partial J(\theta)}{\partial \theta_{0}} &=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)} & \text { for } j=0 \\ \frac{\partial J(\theta)}{\partial \theta_{j}} &=\left(\frac{1}{m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}\right)+\frac{\lambda}{m} \theta_{j} & \text { for } j \geq 1 \end{aligned} θ0J(θ)θjJ(θ)=m1i=1m(hθ(x(i))y(i))xj(i)=(m1i=1m(hθ(x(i))y(i))xj(i))+mλθj for j=0 for j1

def regularized_gradient(theta, X, y, l=1):
    """正则化梯度计算函数
    args
    ----------
    theta: 一个行向量(n,)
        模型参数
    X: 特征数据(m,n)
        m:为特征数据条数,n为包含偏置特征的总个数 
    y: 一个列向量(1,m)
    l:float
        正则化系数,默认为1
    """
    # (9,) (1, 9) (1,)
    m = X.shape[0]  # 获取特征数据集个数
    regularized_term = theta.copy()  # 复制一个与theta相同的变量
    regularized_term[0] = 0          # 不需要正则化的变量设置为0
    # 对需要正则化的theta进行正则化处理
    regularized_term = (l / m) * regularized_term
    return gradient(theta, X, y) + regularized_term

regularized_gradient(theta, X, y)   # 正则化梯度查看
"""
array([-15.30301567, 598.25074417])
"""

4 模型拟合

def linear_regression_np(X, y, l=1):
    """线性回归
    args:
        X: 特征矩阵, (m, n) 已插入偏置项1
        y: 特征数据对应标签r, (m, )
        l: lambda 正则化常数

    return: 训练使用scipy训练的结果(theta值需要使用res.x获取)
    """
    # 初始化参数 theta
    theta = np.ones(X.shape[1])
    # 训练
    res = opt.minimize(fun=regularized_cost,
                       x0=theta,
                       args=(X, y, l),
                       method='TNC',
                       jac=regularized_gradient,
                       options={'disp': True})
    return res
# 计算获取拟合直线参数theta
final_theta = linear_regression_np(X, y, l=0).get('x')
final_theta
"""
array([13.08790348,  0.36777923])
"""
b = final_theta[0] # 截距intercept
m = final_theta[1] # 斜率slope
# 绘制拟合图形
plt.scatter(X[:,1], y, label="Training data", c='r')
plt.plot(X[:, 1], X[:, 1]*m + b, label="Prediction")
plt.legend()

拟合图像

5 绘制学习曲线

在没有正则项以及特征映射情况下的学习曲线

注意:

1.使用训练集的子集来拟合应模型

2.在计算训练代价和交叉验证代价时,没有用正则化

3.使用相同的训练集子集来计算训练代价

# 创建训练损失集损失和交叉集损失
training_cost, cv_cost = [], []

m = X.shape[0]
# 数据逐渐增多的方法
for i in range(1, m + 1):
    res = linear_regression_np(X[:i, :], y[:i], l=0)
    tc = regularized_cost(res.x, X[:i, :], y[:i], l=0)
    # 使用训练集得到的参数计算交叉验证集的损失
    cv = regularized_cost(res.x, Xval, yval, l=0)
    # 记录每次计算得到的损失值
    training_cost.append(tc)
    cv_cost.append(cv)
# 绘制学习曲线
plt.plot(np.arange(1, m+1), training_cost, label='training cost')
plt.plot(np.arange(1, m+1), cv_cost, label='cv cost')
plt.xlabel('train size')
plt.ylabel('cost')
plt.title('Learning curves')
plt.legend()

学习曲线图

结果分析

从学习曲线图可以看出,随着数据的增多训练集误差和测试机误差相差不大,无论训练集有多么大误差都不会有太大改观。从损失值可看出,这个模型拟合不太好, 欠拟合了

6 创建多项式特征

def prepare_poly_data(*args, power):
    """ 多项式特征构建
    args: 多个特征数据
    """
    def prepare(x):
        # 扩展特征
        df = poly_features(x, power=power)
        # 标准化数据,并转为numpy类型
        ndarr = np.array(normalize_feature(df))
        # 插入偏置项
        ndarr = np.insert(ndarr,0, 1, axis=1)
        return ndarr
    return [prepare(x) for x in args]
def poly_features(x, power, as_ndarray=False):
    """扩展特征"""
    # 构建扩充数据的字典,并插入偏置项1
    data = {'f{}'.format(i): np.power(x, i) for i in range(1, power + 1)}
    # 创建dataframe数据
    df = pd.DataFrame(data)
    return np.matrix(df) if as_ndarray else df

def normalize_feature(df):
    """标准化数据
    """
    return df.apply(lambda column: (column - column.mean()) / column.std())

X, y, Xval, yval, Xtest, ytest = load_data()  # 再次读取数据
poly_features(X, power=3)      # 扩充数据特征

新生成的数据

7 准备多项式回归数据

  1. 扩展特征到 8阶,或者你需要的阶数
  2. 使用 归一化 来合并 x n x^n xn
  3. 需要添加偏置项
X_poly, Xval_poly, Xtest_poly = prepare_poly_data(X, Xval, Xtest, power=8)  # 构建8阶的数据
X_poly[:3, :]  # 查看前3行数据

8阶实验数据

8 画出学习曲线

首先绘制无正则项的学习曲线,所以 λ = 0 \lambda=0 λ=0

def plot_learning_curve(X, y, Xval, yval, l=0):
    training_cost, cv_cost = [], []
    m = X.shape[0]
    for i in range(1, m + 1):
        # 开始训练
        res = linear_regression_np(X[:i, :], y[:i], l=l)
        # 根据训练得到参数计算在训练集、交叉验证集中的损失
        tc = cost(res.x, X[:i, :], y[:i])
        cv = cost(res.x, Xval, yval)
        
        training_cost.append(tc)
        cv_cost.append(cv)
    # 绘制学习曲线
    plt.plot(np.arange(1, m + 1), training_cost, label='training cost')
    plt.plot(np.arange(1, m + 1), cv_cost, label='cv cost')
    plt.legend()
plot_learning_curve(X_poly, y, Xval_poly, yval, l=0)   # 绘制学习曲线

正则化参数为0时的学习曲线
结果分析: 从上图可以看到训练的代价太低,不真实,也就是说模型 过拟合

9 通过正则项优化模型

参数 λ = 1 \lambda=1 λ=1

plot_learning_curve(X_poly, y, Xval_poly, yval, l=1) # 绘制学习曲线

正则化参数为1的学习曲线
结果分析: 训练损失稍有增加,减轻了过拟合现象 (高方差)

参数 λ = 100 \lambda=100 λ=100

plot_learning_curve(X_poly, y, Xval_poly, yval, l=100)  

正则化参数为100的学习曲线
结果分析: 正则化系数太大. 模型处于变成 欠拟合状态(也就变成了高偏差)

10 寻找最佳 λ \lambda λ

l_candidate = [0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10]  # 通常设置的lambda的值
training_cost, cv_cost = [], []
# 根据不同lambda查看训练集损失和交叉集损失
for l in l_candidate:
    # 不同lambda的线性模型
    res = linear_regression_np(X_poly, y, l)
    # 根据训练的模型参数计算损失值
    tc = cost(res.x, X_poly, y)
    cv = cost(res.x, Xval_poly, yval)
    training_cost.append(tc)
    cv_cost.append(cv)

绘制不同的lambda情况下训练集和交叉验证集的损失情况

plt.plot(l_candidate, training_cost, label='training')
plt.plot(l_candidate, cv_cost, label='cross validation')
plt.legend()
plt.xlabel(r'$\lambda$')  # 使用latax,在绘图时显示lambda符号
plt.ylabel('cost')
plt.title("cost vs lambda")

不同的lambda情况下训练集和交叉验证集的损失情况
结果分析: 从上图可以看出:

  • 随着 λ \lambda λ值的增加训练集的损失值不断增大,模型朝着欠拟合的方向变化;

  • 交叉验证机的损失值经历了先增大后减小再增大的过程。(测试集数据量比较小,导致先增大后减小)

  • λ \lambda λ选择在0-2之间,在交叉验证损失最小值时 λ \lambda λ的附近

# 获取交叉损失中,损失值最小的lambda值
l_candidate[np.argmin(cv_cost)]  # 在交叉验证集中,lambda=1时,损失值最小
"""
1
"""

进一步寻找最优 λ \lambda λ 在测试集中查看。

# 使用测试数据计算损失
for l in l_candidate:
    theta = linear_regression_np(X_poly, y, l).x
    print('test cost(l={}) = {}'.format(l, cost(theta, Xtest_poly, ytest)))
"""
test cost(l=0) = 10.804375286491785
test cost(l=0.001) = 10.911365745177878
test cost(l=0.003) = 11.265060784108712
test cost(l=0.01) = 10.879143763702967
test cost(l=0.03) = 10.022378551698187
test cost(l=0.1) = 8.631776100446476
test cost(l=0.3) = 7.3365081011786275
test cost(l=1) = 7.466282452677015
test cost(l=3) = 11.643940740451052
test cost(l=10) = 27.715080273166386
"""

结果分析: 在测试集中,可以看出当正则项 λ = 0.3 \lambda=0.3 λ=0.3的时候,损失值最小,那么调参后, λ = 0.3 \lambda = 0.3 λ=0.3 是最优选择,这个时候测试代价最小

总结

学会看懂学习曲线以及曲线走势所表达的意义对模型优化有很大的意义。

程序源码可在订阅号"AIAS编程有道"中回复“机器学习”即可获取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智绘山河

你的鼓励可能解决你下一个问题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值