机器学习线性回归案例讲解_机器学习实例--线性回归

本文深入浅出地介绍了机器学习中的线性回归,包括问题引入、回归问题的概念,以及监督学习的基本原理。通过一个房屋面积与房价的案例,详细解释了线性回归的目标——找到最佳拟合直线,以及如何使用梯度下降法求解。此外,还展示了如何使用Python的sklearn库实现线性回归模型,并进行了模型训练和预测。
摘要由CSDN通过智能技术生成

一、问题引入

1.首先明确几个概念目前三大最常见的机器学习任务:

1.回归问题

2.分类问题

3.聚类问题

Machine learning机器学习是Artificial inteligence的核心,分为四类:

1、Supervised learning监督学习

是有特征(feature)和标签(label)的,即便是没有标签的,机器也是可以通过特征和标签之间的关系,判断出标签。举例子理解:高考试题是在考试前就有标准答案的,在学习和做题的过程中,可以对照答案,分析问题找出方法。在高考题没有给出答案的时候,也是可以给出正确的解决。这就是监督学习。

一句话概括:给定数据,预测标签。

通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类。

2、Unsupervised learning无监督学习

只有特征,没有标签。举例子理解:高考前的一些模拟试卷,是没有标准答案的,也就是没有参照是对还是错,但是我们还是可以根据这些问题之间的联系将语文、数学、英语分开,这个过程就叫做聚类。在只有特征,没有标签的训练数据集中,通过数据之间的内在联系和相似性将他们分成若干类。

一句话概括:给定数据,寻找隐藏的结构。

直接对数据集建模。

以上两者的区别:监督学习只利用标记的样本集进行学习,而无监督学习只利用未标记的样本集。

3、Semi-Supervised learning半监督学习

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值