第十三周项目--验证算法--3Dijkstra算法的验证

问题及代码:

/*    
*烟台大学计算机与控制工程学院     
*作    者:刘倩
*完成日期:2016年11月18日 
*问题描述:从一个顶点到其他定点的最短路径 
*/ 

这里写图片描述


 

(1)grap.h代码

#define MAXV 100                //最大顶点个数  
#define INF 32767       //INF表示∞  
typedef int InfoType;  
  
//以下定义邻接矩阵类型  
typedef struct  
{  
    int no;                     //顶点编号  
    InfoType info;              //顶点其他信息,在此存放带权图权值  
} VertexType;                   //顶点类型  
  
typedef struct                  //图的定义  
{  
    int edges[MAXV][MAXV];      //邻接矩阵  
    int n,e;                    //顶点数,弧数  
    VertexType vexs[MAXV];      //存放顶点信息  
} MGraph;                       //图的邻接矩阵类型  
  
//以下定义邻接表类型  
typedef struct ANode            //弧的结点结构类型  
{  
    int adjvex;                 //该弧的终点位置  
    struct ANode *nextarc;      //指向下一条弧的指针  
    InfoType info;              //该弧的相关信息,这里用于存放权值  
} ArcNode;  
  
typedef int Vertex;  
  
typedef struct Vnode            //邻接表头结点的类型  
{  
    Vertex data;                //顶点信息  
    int count;                  //存放顶点入度,只在拓扑排序中用  
    ArcNode *firstarc;          //指向第一条弧  
} VNode;  
  
typedef VNode AdjList[MAXV];    //AdjList是邻接表类型  
  
typedef struct  
{  
    AdjList adjlist;            //邻接表  
    int n,e;                    //图中顶点数n和边数e  
} ALGraph;                      //图的邻接表类型  
  
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图  
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)  
//      n - 矩阵的阶数  
//      g - 要构造出来的邻接矩阵数据结构  
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵  
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表  
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G  
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g  
void DispMat(MGraph g);//输出邻接矩阵g  
void DispAdj(ALGraph *G);//输出邻接表G 


(2)grap.cpp代码

#include<stdio.h>  
#include<malloc.h>  
#include"grap.h"  
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图  
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)  
//      n - 矩阵的阶数  
//      g - 要构造出来的邻接矩阵数据结构  
  
void ArrayToMat(int *Arr, int n, MGraph &g)  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    g.n=n;  
    for (i=0; i<g.n; i++)  
        for (j=0; j<g.n; j++)  
        {  
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用  
            if(g.edges[i][j]!=0)  
                count++;  
        }  
    g.e=count;  
}  
  
  
void ArrayToList(int *Arr, int n, ALGraph *& G) //用普通数组构造图的邻接表  
  
{  
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    G->n=n;  
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素  
        for (j=n-1; j>=0; j--)  
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=Arr[i*n+j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
  
    G->e=count;  
}  
  
  
void MatToList(MGraph g,ALGraph *&G)//将邻接矩阵g转换成邻接表G  
{  
    int i,j;  
    ArcNode *p;  
    G=(ALGraph *)malloc(sizeof(ALGraph));  
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值  
        G->adjlist[i].firstarc=NULL;  
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素  
        for (j=g.n-1; j>=0; j--)  
            if (g.edges[i][j]!=0)       //存在一条边  
            {  
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p  
                p->adjvex=j;  
                p->info=g.edges[i][j];  
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p  
                G->adjlist[i].firstarc=p;  
            }  
    G->n=g.n;  
    G->e=g.e;  
}  
  
  
void ListToMat(ALGraph *G,MGraph &g)//将邻接表G转换成邻接矩阵g  
{  
    int i,j;  
    ArcNode *p;  
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵  
        for (j=0; j<g.n; j++)  
            g.edges[i][j]=0;  
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值  
    {  
        p=G->adjlist[i].firstarc;  
        while (p!=NULL)  
        {  
            g.edges[i][p->adjvex]=p->info;  
            p=p->nextarc;  
        }  
    }  
    g.n=G->n;  
    g.e=G->e;  
}  
  
  
void DispMat(MGraph g)//输出邻接矩阵g  
{  
    int i,j;  
    for (i=0; i<g.n; i++)  
    {  
        for (j=0; j<g.n; j++)  
            if (g.edges[i][j]==INF)  
                printf("%3s","∞");  
            else  
                printf("%3d",g.edges[i][j]);  
        printf("\n");  
    }  
}  
  
  
void DispAdj(ALGraph *G)//输出邻接表G  
{  
    int i;  
    ArcNode *p;  
    for (i=0; i<G->n; i++)  
    {  
        p=G->adjlist[i].firstarc;  
        printf("%3d: ",i);  
        while (p!=NULL)  
        {  
            printf("-->%d/%d ",p->adjvex,p->info);  
            p=p->nextarc;  
        }  
        printf("\n");  
    }  
}  


(3)main.cpp代码

#include <stdio.h>  
#include <malloc.h>  
#include "graph.h"  
#define MaxSize 100  
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点  
{  
    int k;  
    k=path[i];  
    if (k==v)  return;          //找到了起点则返回  
    Ppath(path,k,v);            //找顶点k的前一个顶点  
    printf("%d,",k);            //输出顶点k  
}  
void Dispath(int dist[],int path[],int s[],int n,int v)  
{  
    int i;  
    for (i=0; i<n; i++)  
        if (s[i]==1)  
        {  
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);  
            printf("%d,",v);    //输出路径上的起点  
            Ppath(path,i,v);    //输出路径上的中间点  
            printf("%d\n",i);   //输出路径上的终点  
        }  
        else  printf("从%d到%d不存在路径\n",v,i);  
}  
void Dijkstra(MGraph g,int v)  
{  
    int dist[MAXV],path[MAXV];  
    int s[MAXV];  
    int mindis,i,j,u;  
    for (i=0; i<g.n; i++)  
    {  
        dist[i]=g.edges[v][i];      //距离初始化  
        s[i]=0;                     //s[]置空  
        if (g.edges[v][i]<INF)      //路径初始化  
            path[i]=v;  
        else  
            path[i]=-1;  
    }  
    s[v]=1;  
    path[v]=0;              //源点编号v放入s中  
    for (i=0; i<g.n; i++)               //循环直到所有顶点的最短路径都求出  
    {  
        mindis=INF;                 //mindis置最小长度初值  
        for (j=0; j<g.n; j++)       //选取不在s中且具有最小距离的顶点u  
            if (s[j]==0 && dist[j]<mindis)  
            {  
                u=j;  
                mindis=dist[j];  
            }  
        s[u]=1;                     //顶点u加入s中  
        for (j=0; j<g.n; j++)       //修改不在s中的顶点的距离  
            if (s[j]==0)  
                if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])  
                {  
                    dist[j]=dist[u]+g.edges[u][j];  
                    path[j]=u;  
                }  
    }  
    Dispath(dist,path,s,g.n,v);     //输出最短路径  
}  
  
int main()  
{  
    MGraph g;  
    int A[6][6]=  
    {  
        {0,50,10,INF,45,INF},  
        {INF,0,15,INF,5,INF},  
        {20,INF,0,15,INF,INF},  
        {INF,20,INF,0,35,INF},  
        {INF,INF,INF,30,0,INF},  
        {INF,INF,INF,3,INF,0},  
    };  
    ArrayToMat(A[0], 6, g);  
    Dijkstra(g,0);  
    return 0;  
}  

运行结果:


知识点总结:

从一个点到其他顶点的最短路径

学习心得:

算法大体都明白,但对着算法和图一步一步的走就有点绕 ,不大会。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值