这篇文章是一个做跟踪的公司发表的,所以找不到源码。
我觉得这篇还蛮有意思的,和以往跟踪论文的思路不太一样,而且完全没有用到深度学习和CNN,连传统图像特征也没怎么用(除了sobel)。除了关注目标的位置坐标(x,y),bounding box大小(w,h)外,还添加了目标的旋转角度信息,所以画出的跟踪框会更加紧致。
由于是利用关键点来定位,所以只适用于刚性物体。
(1)生成模型
初始化得到目标图片,然后通过sobel和阈值计算出目标的一些关键点,并通过非最大值抑制NMS(和IOU的类似,只不过这里维数变成1了)使关键点变得稀疏些。既要有这些点的坐标,又要有这些点的梯度矢量。
(2)模型定位
通过一个相似性度量函数,得到Score(x,y)(θ,s)(这里看得有点懵,不知道怎么得出来的)
最大值对应的(x,y)(θ,s)就是预测目标的位置信息。
(3)模型更新
文章解释了为什么这种方法会对遮挡比较鲁棒:
The robustness to occlusion comes from the fact that missing points in the target image will, on average, contribute nothing to the sum of (4). Similarly, clutter lines or points in the target image do not only need to coincide with the sparse set of model points, but also need to have a similar direction vectors to contribute to the similarity.
其实,目标位置如果能有旋转角度这个参量,跟踪效果会更好,虽然在VOT那些指标上没有提升。但关键在于一般的数据集ground truth没有旋转角度这个数据,所以监督学习就没法做,一个个标注又太麻烦。