习题4-7 最大公约数和最小公倍数 (15 分)
本题要求两个给定正整数的最大公约数和最小公倍数。
输入格式:
输入在一行中给出两个正整数M和N(≤1000)。
输出格式:
在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1空格分隔。
输入样例:
511 292
输出样例:
73 2044
分析:对于“求最大公约数”有两种方法:(1)枚举法(2)辗转相除法。对于这两种方法可以参见之前写过的一篇博客https://blog.csdn.net/melody_1016/article/details/82527391
对于“求最小公倍数”,我的思路是:利用已经求出的最大公约数,然后不断扩大2倍、3倍……进行检验,直到它能同时被M和N整除,这时得到的数字就是最小公倍数。
代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{
int M, N;
int yueshu = 1;
int beishu = 1;
scanf("%d %d", &M, &N);
//先找到最大公约数
for (int i = 1; i <= M&&i <= N; i++)
{
if (M%i == 0 && N%i == 0)
{
yueshu = i;
}
}
//根据最大公约数寻找最大公倍数
//beishu = yueshu;
for (int j = 1;; beishu= yueshu*j)
{
if (beishu%M == 0 && beishu%N == 0)
{
break;
}
j++;
}
printf("%d %d\n", yueshu, beishu);
system("pause");
return 0;
}
测试结果:
思路二:对于“最小公倍数” 的求法,没有必要用最大公约数依次扩大倍数的方式,可以直接用(M*N)/最大公约数。
代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{
int M, N,m,n;
int t = 0;
scanf("%d %d", &M, &N);
//辗转相除法求最大公约数
m = M;//先保存M,N的值,如果直接使用M,N的值求最大公约数,则最后求最大公倍数时M、N的值已经变了
n = N;
while (n != 0)
{
t = m%n;
m = n;
n = t;
}
//这时m是计算出的最大公约数;最小公倍数等于(M*N)/最大公约数m
printf("%d %d", m, M*N / m);
system("pause");
return 0;
}
测试结果: