本题要求两个给定正整数的最大公约数和最小公倍数。
输入格式:
输入在一行中给出两个正整数M和N(≤)。
输出格式:
在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1空格分隔。
输入样例:
511 292
输出样例:
73 2044
思路
最大公约数的求法—辗转相除法
以下摘自百度百科
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
若两个数相除为0,那么除数辩是最大公约数
最小公倍数—公式计算
最小公倍数=这两个数的成绩/最大公约数
下面上代码
#include<stdio.h>
int max(int, int);
int min(int, int, int);
int main() {
int m, n, max_, min_;
int i, j, k, t;
scanf("%d %d", &m, &n);
max_ = max(m, n);
min_ = min(m, n, max_);
printf("%d %d", max_, min_);
}
int max(int m, int n) {
int result;
while (n) {
result = m % n;
m = n;
n = result;
}
return m;
}
int min(int m, int n, int ma) {
int result;
result = m * n / ma;
return result;
}