习题4-7 最大公约数和最小公倍数 (15分)

本题要求两个给定正整数的最大公约数和最小公倍数。

输入格式:
输入在一行中给出两个正整数M和N(≤)。

输出格式:
在一行中顺序输出M和N的最大公约数和最小公倍数,两数字间以1空格分隔。

输入样例:

511 292

输出样例:

73 2044

思路
最大公约数的求法—辗转相除法
以下摘自百度百科

例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

若两个数相除为0,那么除数辩是最大公约数

最小公倍数—公式计算
最小公倍数=这两个数的成绩/最大公约数
下面上代码

#include<stdio.h>
int max(int, int);
int min(int, int, int);
int main() {
	int m, n, max_, min_;
	int i, j, k, t;
	scanf("%d %d", &m, &n);
	max_ = max(m, n);
	min_ = min(m, n, max_);
	printf("%d %d", max_, min_);
}
int max(int m, int n) {
	int result;
	while (n) {

		result = m % n;
		m = n;
		n = result;
	}
	return m;
}
int min(int m, int n, int ma) {
	int result;
	result = m * n / ma;
	return result;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值