盛水最多的容器 + 接雨水(相向双指针)

目录

一、盛水最多的容器

二、 接雨水

2.1 - 前后缀分解

2.2 - 相向双指针



一、盛水最多的容器

题目描述

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0)(i, height[i])

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1

 

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。 

示例 2

输入:height = [1,1]
输出:1 

提示

  • n == height.length

  • 2 <= n <= 10^5

  • 0 <= height[i] <= 10^4

代码实现

int maxArea(int* height, int heightSize)
{
    int max = 0;
    int left = 0;
    int right = heightSize - 1;
    while(left < right)
    {
        int l = right - left;
        int h = height[left] < height[right] ? height[left++] : height[right--];
        int area =l * h;
        max = area > max ? area : max;
    }    
    return max;
}

分析: 

二、 接雨水

题目描述

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。  

示例 2

输入:height = [4,2,0,3,2,5]
输出:9 

提示

  • n == height.length

  • 1 <= n <= 2 * 10^4

  • 0 <= height[i] <= 10^5

2.1 - 前后缀分解

int trap(int* height, int heightSize) 
{
    int* pre_max = (int*)malloc(sizeof(int) * heightSize);
    int* suf_max = (int*)malloc(sizeof(int) * heightSize);
    pre_max[0] = height[0];
    for (int i = 1; i < heightSize; i++)
    {
        if (height[i] > pre_max[i - 1])
            pre_max[i] = height[i];
        else
            pre_max[i] = pre_max[i - 1];
    }
    suf_max[heightSize - 1] = height[heightSize - 1];
    for (int i = heightSize - 2; i >= 0; i--)
    {
        if (height[i] > suf_max[i + 1])
            suf_max[i] = height[i];
        else
            suf_max[i] = suf_max[i + 1];
    }
    int sum = 0;
    for (int i = 0; i < heightSize; i++)
    {
        int h = (pre_max[i] < suf_max[i] ? pre_max[i] : suf_max[i]) - height[i];
        sum += h * 1;
    }
    free(pre_max);
    free(suf_max);
    return sum;
}

分析

如果能求出每个宽度为 1 的柱子上所接的雨水,那么将所有的水量相加就能得到结果。

pre_max[i] 表示 height[0] ~ height[i] 中最高的柱子;suf_max[i] 表示 height[i] ~ height[heightSize - 1] 中最高的柱子。

i 根的柱子上所接的雨水则为:min(pre_max[i], suf_max[i]) - height[i]

2.2 - 相向双指针

int trap(int* height, int heightSize)
{
    int sum = 0;
    int left = 0, right = heightSize - 1;
    int pre_max = 0, suf_max = 0;
    while (left <= right)
    {
        pre_max = height[left] > pre_max ? height[left] : pre_max;
        suf_max = height[right] > suf_max ? height[right] : suf_max;
        if (pre_max < suf_max)
        {
            sum += pre_max - height[left];
            left++;
        }
        else
        {
            sum += suf_max - height[right];
            right--;
        }
    }
    return sum;
}

分析

pre_max 表示 height[0] ~ height[left] 中最高的柱子;suf_max 表示 height[right] ~ height[heightSize - 1] 中最高的柱子。

  1. 如果 pre_max < suf_max,第 left 根柱子上所借雨水的高度就由 pre_max 决定,因为 suf_max[left] 一定大于 pre_max

  2. 如果 suf_max < pre_max,则第 right 根柱子上所借雨水的高度就由 suf_max 决定,因为 pre_max[right] 一定大于 suf_max

相较于前后缀分解,使用相向双指针求解,时间复杂度依然是 O(n),而空间复杂度则变成了 O(1)。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值