《剑指 Offer》专项突破版 - 面试题 48 : 序列化和反序列化二叉树(C++ 实现)

本文介绍了如何使用前序遍历的方式将二叉树序列化为字符串,通过逗号分隔节点值和特殊字符串表示nullptr。同时,详细展示了如何递归地反序列化这个字符串,构建出原始的二叉树结构。
摘要由CSDN通过智能技术生成

目录

前言

一、序列化二叉树

二、反序列化二叉树


 


前言

题目链接LCR 048. 二叉树的序列化与反序列化 - 力扣(LeetCode)

题目

请设计一个算法将二叉树序列化成一个字符串,并能将该字符串反序列化出原来的二叉树。


一、序列化二叉树

先考虑如何将二叉树序列化为一个字符串。需要逐个遍历二叉树的每个节点,每遍历到一个节点就将节点的值序列化到字符串中。以前序遍历的顺序遍历二叉树最适合序列化。如果采用前序遍历的顺序,那么二叉树的根节点最先序列化到字符串中,然后是左子树,最后是右子树。这样做的好处是在反序列化时最方便,从字符串中读出的第 1 个数值一定是根节点的值

实际上,只是把节点的值序列化到字符串中是不够的

  1. 首先,要用一个分隔符(如逗号)把不同的节点分隔开

  2. 其次,还有考虑如何才能在反序列化的时候构造不同结构的二叉树。例如,下图 (a) 和下图 (b) 中的二叉树都有 5 个节点,并且每个节点的值都是 6。如果只把节点的值序列化到字符串,那么序列化这两棵二叉树的结果将是相同的。如果这样,反序列化的时候就不能构建不同结构的二叉树。

    应该如何区分上图 (a) 和上图 (b) 中的两棵二叉树?上图 (a) 中二叉树的第 2 层第 2 个节点的两个子节点均为 nullptr,而上图 (b) 中二叉树的第 2 层第 1 个节点的两个子节点均为 nullptr。也就是说,尽管 nullptr 节点通常没有在图上画出来,但它们对树的结构是至关重要的。因此,应该把 nullptr 节点序列化成一个特殊的字符串。如果把 nullptr 节点序列化成 "#",那么上图 (a) 中的二叉树用前序遍历将被序列化成字符串 "6,6,6,#,#6,#,#,6,#,#",而上图 (b) 中的二叉树将被序列化成字符串 "6,6,#,#,6,6,#,#,6,#,#"。

序列化二叉树的参考代码如下所示:

string serialize(TreeNode* root)
{
    if (root == nullptr)
        return "#";
    
    return to_string(root->val) + ","
        + serialize(root->left) + ","
        + serialize(root->right);
}


二、反序列化二叉树

接着考虑反序列化。由于把二叉树序列化成一个以逗号作为分隔符的字符串,因此可以根据分隔符把字符串分隔成若干子字符串,每个子字符串对应二叉树的一个节点。如果一个节点为 nullptr,那么它和 "#" 对应;否则这个节点将和一个表示它的值的子字符串对应

如果用前序遍历序列化二叉树,那么分隔后的第 1 个字符串对应的就是二叉树的根节点,因此可以先根据这个字符串构建出二叉树的根节点,然后先后反序列化二叉树的左子树和右子树。在反序列化它的左子树和右子树时可以采用类似的方法,也就是说,可以调用递归函数解决反序列化子树的问题

递归地反序列化二叉树的参考代码如下所示:

TreeNode* CreateBiTree(const vector<string>& v, int* pi)
{
    if (v[*pi] == "#")
    {
        ++(*pi);
        return nullptr;
    }
    
    TreeNode* root = new TreeNode(stoi(v[(*pi)++]));
    root->left = CreateBiTree(v, pi);
    root->right = CreateBiTree(v, pi);
    return root;
}
​
TreeNode* deserialize(string data)
{
    vector<string> v;
    size_t pos = 0;
    size_t ret;
    while ((ret = data.find(",", pos)) != string::npos)
    {
        v.push_back(data.substr(pos, ret - pos));
        pos = ret + 1;
    }
    v.push_back(data.substr(pos));
​
    int i = 0;
    return CreateBiTree(v, &i);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值