标题:发现环
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入
-----
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出
----
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入:
5
1 2
3 1
2 4
2 5
5 3
样例输出:
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入
-----
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出
----
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入:
5
1 2
3 1
2 4
2 5
5 3
样例输出:
1 2 3 5
题目分析:众所周知tarjan
但是利用并查集加深搜也可以做到
如果在加边的过程中,边的两个点的集合不是一个集合的话,那么说明这个边是不在环上的有可能连接两个点,有可能连接两个联通图,有可能连接一个点和一个联通图
如果边上的两个端点是属于一个点集,那就是这条边连接是一个联通图上的两个点,那么这条边一定是一造成环,那么记录这两个点,那么并且不要把这这条边加入到原图中,以便于深搜遍历最大的路径,也就是这个环
翠花,上代码~
#include<iostream>
#include<vector>
#include<set>
#include<string.h>
using namespace std;
#define MAXN 100010//定义最大的数据规模
int vis[MAXN];//访问标记数组
set<int> r;//保存环的下边,set自动从小到大排序
int pre[MAXN];//并查集前驱数组
vector<int> m[MAXN];//邻接表
int Find(int x)//路径压缩并返回集合父节点
{
int p,temp;
p=x;
while(x!=pre[x])
x=pre[x];
while(p!=x)
{
temp=pre[p];
pre[p]=x;
p=temp;
}
return x;
}
bool dfs(int s,int e)//深搜
{
if(s==e)//如果找到了,插入,那么就返回true
{
r.insert(s);
return true;
}
vis[s]=1;//访问标记1
for(int i=0;i<m[s].size();i++)//遍历s的邻接表
{
if(vis[m[s][i]]==0)//如果该点没有访问过
{
bool t=dfs(m[s][i],e);//递归遍历,如果递归找到了就得到true
// cout<<t<<endl;
if(t)
{
r.insert(s);//记录环上的路径点
return true;//返回true
}
}
}
return false;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
pre[i]=i;
memset(vis,0,sizeof(vis));//初始化
int to;
int from=to=0;
for(int i=0;i<n;i++)
{
int a,b;
cin>>a>>b;
if(Find(a)!=Find(b))//如果该边的两个端点不是一个集合,将该边加入邻接表并且放入一个集合
{
pre[Find(a)]=pre[Find(b)];
m[a].push_back(b);
m[b].push_back(a);
}
else //if(from>0)//如果是一个集合那么就说明这两个点是环的点,标记为环的起点和终点,并且从真正的图中拆掉该边不加入邻接表
{
from=a;
to=b;
}
}
dfs(from,to);//从from到to
set<int>::iterator it=r.begin();
for(;it!=r.end();it++)
{
cout<<*it<<" ";//set插入时自动排序,所以直接输出即可
}
}