蓝桥杯-发现环(python-简单Tarjan算法)

一、题目

题目 1841: 蓝桥杯2017年第八届真题-发现环
时间限制: 1Sec 内存限制: 128MB 提交: 1686 解决: 545
题目描述
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入

5
1 2
3 1
2 4
2 5
5 3

样例输出

1 2 3 5

思路和代码

思路:用简化的Tarjan算法来寻找一棵树中的唯一强连通图。(原Tarjan算法会输出所有的强连通图。这是Tarjan算法的解析:简单直观理解Tarjan算法)因为不需要输出所有的强连通图,所以不需要Dns和Low数组记录位置和父子情况。
  大体思路就是用一个栈存储当前遍历的树结点,若没有下一个结点则回溯,若下一个结点指向了栈内有的元素(也就是根节点到当前结点的路径中某个元素)则出现了一条回路,输出这条回路。

技巧
一、使用Tarjan算法时应该用链表存图,用矩阵存图在每次找下一个未到达结点时需要逐个查找,时间开销很大。(基本上每种需要逐个查找下一格位置的问题都应该用链表存)
二、本题因为明确一定是一棵树,故可以从任意一个节点开始遍历(代码中选了1)。原因是一棵树的任一个结点都可以看作根结点。

N = int(input())
ls = list()
for i in range(N):
    ls.append([int(x) for x in input().split()])
    
# 用链存图。
link = [[] for _ in range(N+1)]
for x in ls:
    link[x[0]].append(x[1])
    link[x[1]].append(x[0])
    
    

# Tarjan算法思想找强连通回路
stack = list()
# 选择1作为根节点
stack.append(1)
res = []
while len(stack)!= 0:
    cur = stack[-1]
    # 存在下一个结点
    if len(link[cur])!=0:
        nex = link[cur][0]
        # 用了这条边,删去这条边
        del link[cur][0]
        i = 0
        while link[nex][i]!=cur:
            i += 1
        del link[nex][i]
        # 若下一个结点是指向父结点,输出结果并终止循环
        if nex in stack:
            res.append(nex)
            while stack[-1] != nex:
                res.append(stack.pop())
            break

        # 若不是则加入栈
        else:
            stack.append(nex)
    # 不存在下一条边,出栈
    else:
        stack.pop()

res.sort()
print(" ".join([str(x) for x in res]))
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值