一、题目
题目 1841: 蓝桥杯2017年第八届真题-发现环
时间限制: 1Sec 内存限制: 128MB 提交: 1686 解决: 545
题目描述
小明的实验室有N台电脑,编号1~N。原本这N台电脑之间有N-1条数据链接相连,恰好构成一个树形网络。在树形网络上,任意两台电脑之间有唯一的路径相连。
不过在最近一次维护网络时,管理员误操作使得某两台电脑之间增加了一条数据链接,于是网络中出现了环路。环路上的电脑由于两两之间不再是只有一条路径,使得这些电脑上的数据传输出现了BUG。
为了恢复正常传输。小明需要找到所有在环路上的电脑,你能帮助他吗?
输入
第一行包含一个整数N。
以下N行每行两个整数a和b,表示a和b之间有一条数据链接相连。
对于30%的数据,1 <= N <= 1000
对于100%的数据, 1 <= N <= 100000, 1 <= a, b <= N
输入保证合法。
输出
按从小到大的顺序输出在环路上的电脑的编号,中间由一个空格分隔。
样例输入
5
1 2
3 1
2 4
2 5
5 3
样例输出
1 2 3 5
思路和代码
思路:用简化的Tarjan算法来寻找一棵树中的唯一强连通图。(原Tarjan算法会输出所有的强连通图。这是Tarjan算法的解析:简单直观理解Tarjan算法)因为不需要输出所有的强连通图,所以不需要Dns和Low数组记录位置和父子情况。
大体思路就是用一个栈存储当前遍历的树结点,若没有下一个结点则回溯,若下一个结点指向了栈内有的元素(也就是根节点到当前结点的路径中某个元素)则出现了一条回路,输出这条回路。
技巧:
一、使用Tarjan算法时应该用链表存图,用矩阵存图在每次找下一个未到达结点时需要逐个查找,时间开销很大。(基本上每种需要逐个查找下一格位置的问题都应该用链表存)
二、本题因为明确一定是一棵树,故可以从任意一个节点开始遍历(代码中选了1)。原因是一棵树的任一个结点都可以看作根结点。
N = int(input())
ls = list()
for i in range(N):
ls.append([int(x) for x in input().split()])
# 用链存图。
link = [[] for _ in range(N+1)]
for x in ls:
link[x[0]].append(x[1])
link[x[1]].append(x[0])
# Tarjan算法思想找强连通回路
stack = list()
# 选择1作为根节点
stack.append(1)
res = []
while len(stack)!= 0:
cur = stack[-1]
# 存在下一个结点
if len(link[cur])!=0:
nex = link[cur][0]
# 用了这条边,删去这条边
del link[cur][0]
i = 0
while link[nex][i]!=cur:
i += 1
del link[nex][i]
# 若下一个结点是指向父结点,输出结果并终止循环
if nex in stack:
res.append(nex)
while stack[-1] != nex:
res.append(stack.pop())
break
# 若不是则加入栈
else:
stack.append(nex)
# 不存在下一条边,出栈
else:
stack.pop()
res.sort()
print(" ".join([str(x) for x in res]))